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Abstract
This paper extends the notion of learning equilibrium in game theory from matrix games

to stochastic games. We introduce Foolproof Cooperative Learning (FCL), an algorithm that
converges to a Tit-for-Tat behavior. It allows cooperative strategies when played against itself
while being not exploitable by selfish players. We prove that in repeated symmetric games, this
algorithm is a learning equilibrium. We illustrate the behavior of FCL on symmetric matrix
and grid games, and its robustness to selfish learners.

1 Introduction
In William Golding’s novel “Lord of the Flies”, a group of children who survived an airplane crash
try to establish rules on a desert island in order to avoid chaos. Unfortunately, they fail at forcing a
cooperative solution and some of them start defecting, which results in a demented group behaviour.
In this paper, we prevent such tragedies in learning algorithms by constructing a safe way to learn
cooperation in unknown environments, without being exploitable by potentially selfish agents.

In multi-agent learning settings, environments are usually modeled by stochastic games [25].
Multi-agent reinforcement learning (MARL) brings a framework to construct algorithm that aim to
solve stochastic games where players individually or jointly search for an optimal decision-making
to maximize a reward function. Individualist approaches mostly aim at reaching equilibrium, taking
the best actions whatever the opponents behaviors are [3, 15]. Joint approaches aim at optimizing
a cooperative objective and can be viewed as a single agent problem in a larger dimension [6], but
are easily exploited when one agent starts being individualist.

We focus on symmetric situations, making sure that no agent has an individual advantage. For
example, this is the case on a desert island with a quantity of resources equally accessible to all
agents. Moreover, we consider repeated games, modelling the recurrent possibility to start again the
situation from the beginning. In the island resource example, repetitions could represent successive
days or, at larger scale, 4-seasons cycles. In fact, any stochastic game where players have the same
reward functions and dynamics is symmetric since all players are starting with the same chances.
This applies to most of common-pool resource appropriation games.

In this context, we introduce Foolproof Cooperative Learning (FCL), a model-free learning
algorithm that, by construction, converges to a Tit-for-Tat behaviour, cooperative against itself
and retaliatory against selfish algorithms. We the notion of learning equilibrium [4] to stochastic
games, describing a class of learning algorithms such that the best way to play against them is to
adopt the same behaviour. We demonstrate that FCL is an example of learning equilibrium that
forces a cooperative behaviour, and we empirically verify this claim with two-agents matrix and
grid-world repeated symmetric games.

When not given in the paper, the proofs of all stated results are provided in the appendix.

2 Definitions and Notations
An N-player stochastic game can be written as a tuple (S, (Ai)i=1...N ,P, µ0, (ri)i=1...N ), where S
is the set of states, Ai the set of actions for player i, P the transition probability (P(·|s, a1 . . . aN )),
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µ0 a distribution over states (µ(s0)), ri the reward function for player i (ri(s, a1 . . . aN )). We also
assume bounded, deterministic reward functions and finite state and action spaces.

In a repeated stochastic game, a stochastic game (the stage game) is played and at each iteration,
it continues with probability γ ∈ [0, 1[ or terminates and starts again according to µ0. This is
repeated an infinite number of times, and players have to maximize their average return during a
stage game [19]. Terminating with probability γ is equivalent to use a discount factor while playing
a stage game.

A stationary strategy (or policy) for player i, πi(·|s) ∈ ΠAi , maps a state to a probability
distribution over its set of possible actions. We note π−i the product of all players strategies but
player i and π = π1 × · · · × πN = πi × π−i the product of all player strategies, called the strategy
profile. Given opponents strategies π−i, the goal for a rational player i is to find a strategy π∗i that
maximizes its average return Ri during a stage game:

π∗i = argmax
πi

Ri(πi, π−i) = argmax
πi

Eπi,π−i,P
[∑

l

γlr(sl, ali, al−i)
]
.

The policy π∗i depends on the opponents strategies and is called the best response for player i
to π−i. In general, we call strategy any process {πt}t defining a stationary strategy for any stage
t. The value of a player’s non-stationary strategy {πt}t is the average return over stage games,
Et>0[Ri(πti , πt−i)].

In order to allow rewarding or retaliation strategies, we only consider games where all players
are aware of all opponents actions and rewards, and receive a signal each time the game is reset. We
also admit players to share information with some opponents in order to organize joint retaliation
actions or joint explorations. Moreover, we only consider Repeated Symmetric Games (RSG):

Definition 1 (Repeated Symmetric game (RSG)). An N-player repeated stochastic game is sym-
metric if, for any stationary strategy profile (π1 . . . πN ) and for any permutation ψ over players:

∀1 ≤ i ≤ N, Rψ(i)(πi, π−i) = Ri(πψ(i), πψ(−i)).

This generalizes the definition for symmetric N-player matrix games [7] to stochastic games
where players utilities are replaced by average returns1. In this paper, we use the concept of N-cyclic
permutations to construct specific strategies:

Definition 2 (N-cyclic permutation). A permutation σ is N-cyclic if for all i, j ∈ {1 . . . N}, there
is k such that σk(i) = j.

2.1 Nash equilibrium
A Nash equilibrium describes a stationary strategy profile π∗ = π∗1 × · · · × π∗N , such that no player
can individually deviate and increase its payoff [20]:

∀1 ≤ i ≤ N, ∀πi ∈ ΠAi , Ri(πi, π∗−i) ≤ Ri(π∗i , π∗−i).

Note that in a symmetric game, for any Nash equilibrium with returns (R1 . . .RN ) and for any
permutation σ over players, there is another Nash equilibrium with returns (Rσ(1) . . .Rσ(N)). This
definition can be extended to non-stationary strategies using expected return over stage games:
no players can individually deviate from an equilibrium non-stationary strategy and increase its
average return over stage games (Et>0[xt] = E[

∑
t>0 x

t] stands for the average over stages):

∀1 ≤ i ≤ N, ∀{πti ∈ ΠAi}t,Et>0[Ri(πti , π
t,∗
−i )] ≤ Et>0[Ri(πt,∗i , πt,∗−i )].

As Et>0[Ri(πti , πt−i)] = Ri(πi, π−i) for stationary strategy profiles, any stationary strategy
equilibrium is still an equilibrium among non-stationary processes.

1Actually, the definition initially given: ∀i,Ri(πi, π−i) = Rψ(i)(πψ(i), πψ(−i)) [7] is incorrect in the sens that
symmetries are not independent of player identities, which is not the case if the right-hand return is indexed with
the inverse permutation instead [27].
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3 Cooperative strategies
We call cooperative any strategy (not necessary stationary) that maximizes a common quantity
R̂ = f(R1 . . .RN ). Usual examples are strategies that maximize the sum, the product or the
minimum of players returns. In RSGs, the strategy that maximizes the minimum of player returns
is particularly interesting as it coincides with the egalitarian solutions [10] to the Bargaining
problem [21] and is easy to determine. In this paper, we refer to this strategy as the egalitarian
strategy. An important property of RSGs is the fact that egalitarian solutions can always be
obtained by repeatedly applying an N-cyclic permutation on a stationary strategy that maximizes
the sum of players returns.

Theorem 1. Let πΣ
i be a stationary strategy for player i that maximizes the sum of players returns

in an N-player RSG, σ an N-cyclic permutation over players, and t indexing the repeated stage
games. Then, the strategy πt = (πΣ

σt(1) . . . π
Σ
σt(N)) (where σt = σ ◦ · · · ◦ σ t times) is an egalitarian

strategy.

3.1 Tit-for-Tat
Given a stochastic game, one player i can learn a strategy πr,ji that retaliates when another player
j deviates from a target strategy. If a retaliation is smaller than the reward obtained by the player
while deviating, the strategy can be repeated until the retaliation is larger than this reward in
total. In that case, the target strategy is said enforceable: if all player are accorded to retaliate
when a player deviates from a strategy profile and if the retaliation is strong enough, no player
can improve its payoff by individually deviating from the strategy profile. If opponents actions are
part of the observable state and if the target strategy profile and the dynamics are deterministic, it
becomes possible to construct a stationary strategy that retaliates when a player does not play
according to the profile. If the retaliation lasts forever after the first deviation, the strategy is
by construction a Nash equilibrium [22]. However, we are more interested in finished retaliations
since it gives a chance to a selfish learning agent to learn the target strategy. Such processes are
called Tit-for-Tat (TFT) and are known to induce cooperation in repeated social dilemma [2]. The
following theorem 2 states that in an RSG, if the target is an egalitarian strategy, there is always a
stationary way to retaliate and therefor one can always construct a TFT strategy:

Theorem 2. In an RSG, let πr,j = argminπ−j argmaxπj Rj(πj , π−j) = πr,jj × πr,j−j, and π∗ a
egalitarian strategy (not necessary stationary). Then, πr,j is a retaliation strategy with respect to
π∗:

∀1 ≤ j ≤ N, ∀πj ∈ ΠAj ,Rj(πj , π
r,j
−j) ≤ Et≥0[Rj(π∗,tj , π∗,t−j)].

For a player j, we note V cj = Et≥0[Rj(π∗,tj , π∗,t−j)] its average return when all player cooperate,
V rj = Rj(πr,j) its best average return when others retaliate and V dj = maxπj Et≥0[Rj(πj , π∗,t−j)] its
best average return by defecting. When a single retaliation is too small so it still worth defecting
for a selfish player, the retaliation must be repeated. The minimal number or retaliation repeats
can be given by (see the proof of Thm. 3 below):

Kj =
⌈
V dj − V cj
V cj − V rj

⌉
. (1)

In the edge case where V cj = V rj , the retaliation strategy must be employed endless, but the
cooperative objective is not affected (this is the case in Rock–paper–scissors). Let {πtTFT}t be
the (non-stationary) strategy that follows π∗ if all players cooperate, or repeat πr,j over Kj stage
games if a player j deviates from π∗. By construction, {πtTFT}t is a Nash equilibrium.

Theorem 3. {πtTFT}t is a Nash equilibrium.

Proof. Since Kj ≥
V dj −V

c
j

V c
j
−V r

j
and V cj ≥ V rj , we write:

Kj(V cj − V rj ) ≥ V dj − V cj ,

which gives:
V cj ≥

1
Kj + 1(V dj +KjV

r
j ).
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On the left, this is the average return over stages of an always cooperating player, on the right this
is the average return over stages of any deviating player. Therefore, for any {πtj}t 6= {πtTFT}t:

Et≥0[Rj(πtTFT)] ≥ Et≥0[Rj(πtj , πtTFT−j )].

4 Learning algorithm
In this paper, we define learning algorithms as follow:

Definition 3. A learning algorithm (for player i) is a random process Ai = {πTi }T conditioned, at
any stage T > 0, by the historic

HT = {{sl, ali, al−i, rli, rl−i}l∈t}t<T

of all states, actions and rewards encountered up to stage T − 1 (l ∈ t stands for the l-th transition
belonging to stage t).

The algorithm profile A = (A1 . . . AN ) is the set of all players algorithms. We will note
Ai(t) = πti .

4.1 Multi-agent learning
Reinforcement learning provides a class of algorithms that aim at maximizing an agent’s return.
Out of all of them, our interest concerns Q-learning approaches [28] for three reasons: they are
model-free, off-policy and they are guaranteed to converge in finite state and action spaces. In a
game G, for a player i and given opponents policy π−i, the basic idea is to learn a Q-function that
approximates, for all states and actions, the average return starting from playing this action at
this point while using the best strategy. Ideally, the Q-function Qi associated with player i’s policy
that maximizes its return holds:

Qi(s, ai, a−i) = ri(s, ai, a−i) + γ
∑
s′

P(s′|s, ai, a−i) max
a′
i

Zi(a′i, s′, π−i)

where Zi(ai, s, π−i) =
∑
a′−i

π−i(a−i|s′)Qi(s′, a′i, a′−i) is the expected value for gent i given its
opponent policy. Q-learning algorithms are constructed in order to progressively approximate the
Q-function without approximating the problem dynamics P and reward functions r, and without
knowing the decision process that generated the historic buffer (in contrast, for example, to policy
gradient algorithms [29]). In finite states and actions spaces, the approximation is obtained by
successively applying the updates:

Qt+1
i (st, ati, at−i) = Qti(st, ati, at−i) + αt

(
rti + γmax

ai
Zi(ai, st+1, π−i)−Qi(st, ati, at−i)

)
,

where αt is the learning rate. However, when the opponent policy is not fixed, maximizing the
Q-function with respect to actions is no longer an improvement of the policy (the response of the
opponents to this deterministic policy can decrease the average player’s return). MARL provides
several alternative greedy improvements. For example, a defensive player can expect opponents to
minimize its Q-function (minimax Q-learning). In that case, a greedy improvement of the policy to
evaluate the value of a new state is obtained by solving the linear problem [14]:

πgreedy
i (.|s) = argmax

πi

min
a−i

∑
ai

πi(ai|s)Qi(s, ai, a−i) (2)

= argmax
πi

min
a−i

Z−i(a−i, s, πi)

and the corresponding Q-learning update becomes:

Qt+1
i (st, ati, at−i) = Qti(st, ati, at−i) + αt

(
rti + γmax

πi
min
a−i

Z−i(a−i, s, πi)−Qi(st, ati, at−i)
)
.
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4.2 Learning equilibrium
We extend the notion of learning equilibrium [4] to repeated stochastic games as follows.

Definition 4 (Learning equilibrium). Let G be a set of stochastic games. An algorithm profile
A∗ = (A∗1 . . . A∗N ) is a learning equilibrium for G if, for any game g ∈ G, there is a stage Tg such
that, for any player i and any learning algorithm Ai:

Et>Tg
[
Ri
(
Ai(t), A∗−i(t)

)]
≤ Et>Tg

[
Ri
(
A∗i (t), A∗−i(t)

)]
Consequently, just like Nash equilibrium for the choice of a strategy, no player can individually

follow an alternative algorithm and increase its asymptotic score. However, one important difference
is the fact that a learning algorithm is not defined with respect to a particular game, but a set of
games.

We may think that a process always playing a Nash equilibrium of the given game (πti = π∗i for
all t) is a learning equilibrium. However, such a process requires an initial knowledge about the
dynamics and the reward functions of the game and can’t be obtained from a process starting with
an empty condition. Therefore, it can’t be described as a learning algorithm. For the same reason,
a TFT process is not a learning equilibrium. However, we may construct learning algorithms that
asymptotically behave as a TFT or always play a Nash equilibrium. This is the key idea of FCL.

5 Foolproof cooperative learning
As we are interested in forced cooperation, we are looking for a learning algorithm profile that

converges to a TFT process, retaliating if a player deviates from a cooperative strategy. Since the
objective of a cooperative strategy is a common quantity and TFT processes are symmetric, such
a convergence can be obtained if all players are using the same algorithm. FCL, as described in
Alg. 1 (for a player i), has the property to converge to such a behavior when played by all players.
In an N-player game, each FCL player approximates 2N + 1 Q-functions: one associated with the
cooperative policy that maximizes the sum of all players (Qc), N associated with retaliation policies
preventing any defection from other players j (Qrj), and N associated with each opponent’s best
response to the cooperative strategy (Qdj ). At each played stage game, FCL will play according to
a egalitarian cooperative strategy (learned through Qc) unless one of the opponents deviates from
that strategy. In case of an opponent’s defection, all FCL agents will agree on a joint retaliation
according to the minimax strategy (learned through Qrj with Eq.(2)) for K stages according to
Eq.(1). In order to allow exploration, a deterministic process φ(t) is used to decide, at each time t,
between exploration and exploitation. We design φ as a known realization of a random process such
that explorations are endless (∀T , ∃t > T,P[φ(t) = True] > 0), but becomes rare enough with
time so the probability of explorations tends to zero (∀ε > 0 , ∃Tε , ∀t > Tε,P[φ(t) = True] < ε).
This can be implemented using a pseudo-random process with a fixed seed, known by all FCL
players. At exploration stages, all agents are allowed to perform any action without being accused of
defection. In a way, this algorithm can be seen as a disentangled version of Friend-or-Foe Q-learning
(FFQ) [15] which learns to play cooperatively if an opponent is cooperative, or defensively if the
opponent is defective with a single Q-function. However, FFQ can’t learn a TFT behavior as it is
either always cooperative, or always defensive. The following theorem 4 describe the asymptotically
behaviour of FCL in RSGs. Theorem 5 states that FCL defines a learning equilibrium for RSGs.

Theorem 4. Assume S and Ai are finite spaces and the opponents are exploring all possible
state-action couples infinitely many times. Then, FCL converges to a TFT behavior forcing the
egalitarian cooperative strategy in RSGs.

Theorem 5. FCL is a learning equilibrium for RSGs.

6 Experiments
Despite our theoretical claims are established for any number of agents, we restrict our experiments
to games involving two players. We first explore the case of three well known repeated symmetric
matrix games: Iterated Prisoners Dilemma (IPD), Iterated Chicken (ICH) and Rock-Paper-Scissors
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Algorithm 1 FCL for player i.
input List of counters kj = 0 ∀j to repeat retaliations, exploration process φ(s, t), N-cyclic

permutation σ, learning rate sequence {αt}t, initial (arbitrary) functions Qc, {Qdi }i=1...N and
{Qri }i=1...N , initial state s.

1: for stages t = 1 to +∞ do
2: while stage continue do
3: if Kj = 0∀j then
4: if φ(t) then
5: Explore ai ∼ U(Ai) with uniform probability
6: else
7: Take action ai = argmaxaσt(i)

maxa−σt(i)
Qc(s, ai, a−i)

8: end if
9: else
10: Randomly select an agent j such that Kj > 0
11: Take action ai ∼ argminπ−j maxaj

∑
a−j

π−j(a′−j |s)Qrj(s, aj , a−j)
12: kj ← kj − 1
13: end if
14: Observe a−i and new state s′, receive reward ri = ri(s, ai, a−i) and observe r−i
15: Qc′ ← maxa′

i
maxa′−i Q

c(s′, a′i, a′−i)

16: Qc(s, ai, a−i) = Qc(s, ai, a−i) + αt

( ∑
1≤j≤N

rj + γQc′ −Qc(s, ai, a−i)
)

17: for all other agents j 6= i do
18: V rj (s′)← minπ−j maxa′

j

∑
a′−j

π−j(a′−j |s′)Qrj(s′, a′j , a′−j)
19: V dj (s′)← maxa′

j
Qdj (s′, a′j , argmaxa−j maxa′

j
Qc(s′, aj , a−j))

20: Qrj(s, aj , a−j) = Qrj(s, aj , a−j) + αt

(
rj + γV rj (s′)−Qrj(s, aj , a−j)

)
21: Qdj (s, aj , a−j) = Qdj (s, aj , a−j) + αt

(
rj + γV dj (s′)−Qdj (s, aj , a−j)

)
22: Kj ←

⌈
V dj (s′)−V c(s′)
V c(s′)−V r

j
(s′)

⌉
23: if not φ(t) and aj 6= argmaxaσt(j)

maxa−σt(j)
Qc(s, aj , a−j) then

24: kj ← kj +Kj

25: end if
26: end for
27: s← s′

28: end while
29: end for

(RPS). Table 1 shows the payoff matrices. Then, we investigate larger state spaces with grid games
known to induce coordination problems and social dilemma [19]. We introduced a new grid game,
closer to the concept of limited resource appropriation: the Temptation game. In Temptation,
making a movement to the sides can be seen as taking immediately the resource, while making a
movement to the bottom can be seen as waiting for the winter. All grid games are described in
details in Table 2. In order to verify that FCL is a learning equilibrium, we compare the score
obtained by FCL and by selfish learning algorithm, Q-learning and policy-gradient (PG), against
FCL. Indeed, we expect a learning equilibrium performing better than any other algorithm when
the opponents are following the learning equilibrium.

6.1 Implementation details
We implemented FCL using a state-dependent learning rate αt = (

∑
l<t δ{sl = st})−1 that counts

the number of state visits, and exploration φ(t) = {Xt > εdt} where Xt is a pseudo-random uniform
sample between 0 and 1 with a fixed seed, ε the initial threshold and d a decay parameter close to
one. The closer is d to one, the longer lasts the exploration. For selfish Q-learning, we used a similar
learning rate and exploration process, however with different seeds and decay parameters. The
policy gradient was implemented with a tabular representation and Adam gradient descent with
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Table 1: Payoff matrices used for IPD, ICH and RPS.

IPD ICH RPS

Coop. Defect
Coop. (-1,-1) (-3,0)
Defect (0,-3) (-2,-2)

Straight Swerve
Straight (-3,-3) (0,-2)
Swerve (-2,0) (-1,-1)

R P S
R (0,0) (-1,1) (1,-1)
p (1,-1) (0,0) (-1,1)
S (-1,1) (1,-1) (0,0)

Table 2: Grid games. A is the starting position of one player, B is the starting position of the
other. At each turn, both players simultaneously select one action among going up, down, left,
right or stay. When reward cells with $ symbol are reached by one player, the player obtains the
corresponding reward and the game is immediately reset. $A:X means that only player A gets the
reward X when reaching the cell, $X means that any player gets reward X when reaching the cell,
and $X,Y means that the player who reach the cell gets X and the other gets Y (if the other player
reach another rewarding cell, the rewards are summed). Two players can not be on the same cell at
the same time and they can not cross each other. In case of conflict, one player reaches the cell and
the other stays with probability 0.5. Grey cells are walls and are not reachable.

(a) Grid prisoners dilemma (b) Compromise
$100

$A:100 A B $B:100

$B:100 $A:100
A B

(c) Coordination (d) Temptation
$B:100 $A:100

A B

$20,−10 A B $20,−10
$40,−20 $40,−20

learning rate 0.1. Since matrix games are not sequential and since grid games were automatically
reset after 30 steps, we could use a discount factor γ = 1 to estimate value functions. In practice,
we found that adding 1 to the minimal number of retaliation repeats given in Eq. 1 significantly
improves the robustness to selfish learners. In iterated matrix games, since they do not require
large explorations, we used ε = 0.5 and d = 0.9 for both selfish Q-learning and FCL. We used ε = 1
and d = 0.995 in grid games.

6.2 Results
Figure 1 displays our results with the three matrix games IPD, ICH and RPS. Figure 2 displays our
results on grid games. As expected, the score of selfish learners was never higher than the score of
FCL, when the opponent is FCL. Except in RCP, defection conduced to less reward than cooperation
because of retaliations. In RCP, FCL found the only way to retaliate by infinitely playing randomly
against selfish learners, resulting in an average of 0 reward for all players, equivalent to the reward
for cooperation. This illustrates the fact that FCL is a learning equilibrium, since no algorithm
performs better than FCL against FCL. Consequently, FCL was never exploited by selfish learners
while being cooperative in self-play.

7 Related work
Learning cooperative behaviours in a multi-agent setting is a vast field of research, and various
approaches depend on assumptions about the type of games, the type and number of agents, the
type of cooperation and the initial knowledge.

When the game’s dynamic is initially known and in two-player settings, Kalais’ bargaining
solution can be obtained by mixing dynamic and linear programming. Therefore, a polynomial-
time algorithm can be used to solve repeated matrix games [16], as well as repeated stochastic
games [19]. Since a bargaining solution is always better than a minimax strategy (the disagreement
point) [22], a cooperative equilibrium is immediately given. An alternative to our cooperate or
retaliate architecture consists in choosing between maximizing oneself reward (being competitive) or
maximizing a cooperative reward, for example by inferring opponents intentions [11]. The novelty
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Figure 1: Matrix games. Average scores over 20 runs obtained by two standard RL algorithms and
FCL, playing against FCL. In IPD and ICH, after some iterations selfish behaviours, as induced by
Q-learning and PG, start being sub-optimal because of FCL retaliations and accumulate less return
than a cooperative behaviours, as induced by FCL against itself. In RPS, FCL learns to play with
a uniform distribution against selfish algorithms so their average score is null. Black dotted line
represents the average score after convergence of two selfish agent playing against themselves (the
minimax solution).

of our approach is an online setting witch does not require the dynamics nor the reward function in
order to construct a foolproof cooperative behaviour.

In games inducing social dilemmas and when the dynamic is accessible as an oracle, cooperative
solutions can also be obtained by self-play and then applied to define a TFT behaviour forcing
cooperation [12], even when opponent actions are unknown, since in that case the reward function
already brings sufficient information [24]. Here again, they use an offline procedure witch does not
apply to our purely online setting.

Closer to our setting, when the dynamic is unknown, online MARL can extract cooperative
solution in some non-cooperative games, and particularly in restricted resource appropriation [23].
Using alternative objectives based on all players reward functions and their propensity to cooperate
or defect improves and generalizes the emergence of cooperation in non-cooperative games and
limits the risk of being exploited by purely selfish agents [9]. Regarding these approaches, one
advantage of FCL is to disentangle the cooperative and the retaliating policies so it can always
switch from one behaviour to the opposite without a forgetting and re-learning phase.

A similar approach, called Learning with Opponent Learning Awareness (LOLA), consists in
modelling the strategies and the learning dynamics of opponents as part of the environment’s
dynamics and to derive the gradient of the average return’s expectation [8]. If LOLA has no
guaranty of convergence, a recent improvement of the gradient computation, which interpolates
between first and second-order derivations, is proved to converge to local optimums [13]. Although
such agents are purely selfish, empirical results show that they are able to shape each others
learning trajectories and to cooperate in prisoners dilemma. A limitation of this approach toward
building learning equilibrium is the strong assumption regarding the opponents learning algorithms,
supposed to perform policy gradient. Also, this approach differs to our goal since LOLA is selfish
and aims at shaping an opponent behavior (in 2-player settings) while FCL is cooperative but
retaliates in response to selfish agents (in N-player settings).

Learning equilibrium solutions have been constructed for repeated matrix game [4, 1]. However,
these solutions would not easily adapt to stochastic games, one main reason being the fact that
exploration becomes infinite, while it only requires A×N steps in N -agents matrix games with
A different actions. Consequently, after a finished phase of exploration in matrix games, the
deterministic payoff matrix is known and they can extract a Nash Equilibrium to exploit. Note
that the restriction to symmetric games seems recurrent in learning equilibrium literature [5, 26].
In repeated congestion games, it is even possible to construct a class of asymmetric games that
does not admit any learning equilibrium, hence the importance of the symmetry assumption.

8 Conclusion
We introduced FCL, a model-free learning algorithm that, by construction, converges to a TFT
behaviour, cooperative against itself and retaliating against selfish algorithms. We proposed a
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Figure 2: Grid games. Average scores over 20 runs obtained by two standard RL algorithms and
FCL, playing against FCL. After some iterations, selfish behaviours, as induced by Q-learning
and PG, start being sub-optimal because of FCL retaliations and accumulate less return than a
cooperative behaviour, as induced by FCL against itself. Black dotted line represents the average
score after convergence of two selfish agents playing against themselves (the minimax solution).

definition for learning equilibrium, describing a class of learning algorithms such that the best way
to play against it is to adopt the same behaviour. We demonstrated that FCL is an example of
learning equilibrium that forces a cooperative behaviour, and we empirically verified this claim
with two-agents matrix and grid-world repeated symmetric games.

Our approach could be improved by facilitating opponent’s learning of the optimal cooperative
response and by using faster learning approaches. It could also be adapted to larger dimensions
such as continuous state spaces and partially observed settings with function approximation by
replacing tabular Q-learning with deep Q-learning [18]. In that perspective, the main limitation
relies on the necessity to compute the minimax strategy using a linear programming approach.
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9 Appendix
9.1 Proof of Thm. 1
Proof. Since σ is N-cyclic, any player i receives the same average return every N stage games:

Et≥0
[
Ri(πt)

]
= 1
N

N∑
t=1
Ri(πΣ

σt(i), π
Σ
σt(−i)) (the strategy is stationary)

= 1
N

N∑
t=1
Rσt(i)(πΣ

i , π
Σ
−i) (the game is symmetric)

= 1
N

N∑
t=1
Rt(πΣ

i , π
Σ
−i) (changing the order).

Consequently, πt maximizes the sum of returns at any t and the average return of the strategy is
the same for all players. Now, imagine there is a strategy {π̂t}t such that:

min
i

Et≥0
[
Ri(π̂ti , π̂t−i)

]
> min

i
Et≥0

[
Ri(πti , πt−i)

]
.

In that case,∑
i

Et≥0
[
Ri(π̂ti , π̂t−i)

]
> N min

i
Et≥0

[
Ri(πti , πt−i)

]
=
∑
i

Et≥0
[
Ri(πti , πt−i)

]
,

which is in contradiction with the fact that πt maximizes the sum of returns at any t.

9.2 Proof of Thm. 2
Proof. Assume that:

∃πj ,Rj(πj , πr,j−j) > Et≥0[Rj(π∗,tj , π∗,t−j)].

Then, the same is true in particular for j’s best response to πr,j−j , that we note πr,jj :

Rj(πr,jj , πr,j−j) > Et≥0[Rj(π∗,tj , π∗,t−j)].

Since in that case, πr,j−j minimizes j’s return:

∀π−j ,Rj(πr,jj , π−j) ≥ Rj(πr,jj , πr,j−j) > Et≥0[Rj(π∗,tj , π∗,t−j)]

In particular, we have
Et≥0[Rj(πr,jj , π∗,t−j)] > Et≥0[Rj(π∗,tj , π∗,t−j)]. (3)

Besides, we have:
∃i,Et≥0[Ri(πr,jj , π∗,t−j)] ≤ min

k
Et≥0[Rk(π∗,tj , π∗,t−j)] (4)

Indeed, if this was not the case, we would have

∀i,Et≥0[Ri(πr,jj , π∗,t−j)] > min
k

Et≥0[Rk(π∗,tj , π∗,t−j)]

and π∗ is no longer a egalitarian.
On the other hand, since the game is symmetric, one can apply the transposition that permutes

players i and j strategies in Eq. (3):

Et≥0[Ri(πr,ji , π∗,t−i )] > Et≥0[Rk(π∗,tj , π∗,t−j)] ≥ min
k

Et≥0[Rk(π∗,tj , π∗,t−j)],

which is in contradiction with Eq.(4).
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9.3 Proof of Thm. 4
Proof. We assume that all agents are playing FCL. Given the fact that φ is deterministic, there
are no defection. Let’s focus on {π̂t}t = {πt|φ(t) = True} the endless sub-process corresponding
to exploration times. Let A = A1 × · · · × AN . Clearly, for all t, s ∈ S and a ∈ A, π̂t(a|s) > 0.
Consequently, the convergence of Q-functions is given by the convergence of the classic Q-learning
using π(at = a|st = s) = π̂t(a|s) [17]. Let Qc∗ and Qrj

∗ be the corresponding points of convergence.
By construction:

• πc, maximizing Qc∗, maximizes the sum of players returns.

• π∗ = (πcσt(1) . . . π
c
σt(N)) maximizes the min of players returns.

• πr(j), minimizing Qrj
∗, retaliates when player j deviates from π∗.

FCL decision rule at line 7 in Alg.1 corresponds to playing according to π∗ when Qc is close enough
to Qc∗ (when the difference between the max value and the second-max value is larger than twice an
update size). Similarly, decision rule at line 11 corresponds to playing according to πr(j) when Qrj
is close enough to Qrj

∗. Let TQ be the smallest time after which both Qc and Qrj are close enough
to Qc∗ and Qrj

∗ so lines 7 and 11 correspond to playing according to π∗ and πr(j). If explorations
are stopped, FCL is a TFT strategy. Actually explorations never stop but the probability2 of
exploration times tends to zero, which translates to

∀ε > 0 , ∀t > max{Tε, TQ} ,P
[
A1(t) = πtTFT, . . . , AN (t) = πtTFT

]
> 1− ε,

where {πtTFT}t is any player’s TFT strategy induced by π∗ and πr as described in Thm. 3.

9.4 Proof of Thm. 5
Proof. Let Aj = {πtj}t be a learning algorithm different that FCL and played by an agent j while
all other players do FCL (A−j = {πt−j}t). We will distinguish two situations:

(a) ∀s ∈ S , ∀aj ∈ Aj , ∀a−j ∈ A−j , ∀T , ∃t > T, πtj(aj |s)× πt−j(a−j |s) > 0,
(b) ∃s ∈ S , ∃aj ∈ Aj , ∀a−j ∈ A−j , ∃T , ∀t > T, πtj(aj |s)× πt−j(a−j |s) = 0.

In situation (a), conditions for the convergence of FCL agents are met and they converge to a TFT
behavior:

∀ε > 0,∃Tε,∀t > Tε,P
[
A1(t) = πtTFT1

, . . . , AN (t) = πtTFTN

]
> 1− ε.

Let R1 = Et>Tε [Rj(Aj , A∗−j)] the deviating player’s average return when other agents are doing
TFT (with probability 1− ε), R2 its average return when other agents are exploring during stages
(whith probability ε and R∗1 and R∗2 the respective returns when no player deviates). Because of
Thm. 3, we know that R1 ≤ R∗1. If R2 ≤ R∗2, then the average return of a deviating player is
always smaller than if it does not deviate. Otherwise, we have R2 +R∗1 > R∗2 +R1 and by taking:

ε = R∗1 −R1

R2 +R∗1 − (R∗2 +R1)

we obtain, for all t > Tε:
(1− ε)R1 + εR2 ≤ (1− ε)R∗1 + εR∗2.

Consequently:

Et>Tε
[
Rj
(
Aj(t), A∗−j(t)

)]
≤ Et>Tε

[
Rj
(
A∗j (t), A∗−j(t)

)]
.

In situation (b), there is still a subset of state-action couples Ω∞ that will be explored an infinite
number of times. If all other players restrict their states and actions to the same subset (using
πi(a|s) > 0⇔ (a, s) ∈ Ω∞) the induced sub-game is still symmetric and player j is exploring the

2Actually, φ is deterministic but is given by the realization of a random process verifying this property. One can
also considerate that all FCL players are observing the same random process telling them to explore or not.
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whole sub-game an infinite number of times. Consequently, FCL can at least learn a TFT strategy
{π̂tTFT}t based on a retaliation strategy πr,jΩ∞ and a cooperative strategy π∗Ω∞ defined on Ω∞ such
that:

∀{πtj}t 6= {π̂
t
TFTt},Et≥0[Rj(π̂tTFT)] = Et≥0[Rj(π∗Ω∞)] ≥ Et≥0[Rj(πtj , π̂

t
TFT−j )].

Since π∗Ω∞ is necessarily sub-optimal to cooperate in the whole game, we have:

∀{πtj}t 6= {π̂
t
TFTt},Et≥0[Rj(π∗)] ≥ Et≥0[Rj(π∗Ω∞)] ≥ Et≥0[Rj(πtj , π̂

t
TFT−j )].

As a consequence, players can still retaliate and we can use the exact same argument than in (a) to
obtain the desired statement.
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