
Learning from a Learner

Alexis D. Jacq 1 2 Matthieu Geist 1 Ana Paiva 2 Olivier Pietquin 1

Abstract

In this paper, we propose a novel setting for
Inverse Reinforcement Learning (IRL), namely
“Learning from a Learner” (LfL). As opposed to
standard IRL, it does not consist in learning a
reward by observing an optimal agent, but from
observations of another learning (and thus sub-
optimal) agent. To do so, we leverage the fact that
the observed agent’s policy is assumed to improve
over time. The ultimate goal of this approach is
to recover the actual environment’s reward and
to allow the observer to outperform the learner.
To recover that reward in practice, we propose
methods based on the entropy-regularized pol-
icy iteration framework. We discuss different ap-
proaches to learn solely from trajectories in the
state-action space. We demonstrate the genericity
of our method by observing agents implementing
various reinforcement learning algorithms. Fi-
nally, we show that, on both discrete and continu-
ous state/action tasks, the observer’s performance
(that optimizes the recovered reward) can surpass
those of the observed learner.

1. Introduction
Imagine two friends from different nationalities: Bob is
French and Alice is Japanese. During holidays, Bob is vis-
iting Alice’s family and wishes to discover the Japanese
culture. One day, Alice’s grandfather decides to teach Alice
and Bob a traditional board game. Neither Bob nor Alice
know that game. Unfortunately, Alice and her grandfather
only speak Japanese, while Bob only speaks French. How-
ever, Alice decides to learn the game by playing against her
grandfather. She hence practices the game until she is able
to defeat him. As the old man was not an expert, she needed
just a few trials to reach that level. During that time, Bob
was observing Alice’s strategy improvements. Now, we ask

1Google Brain, Paris, France 2INESC-ID, Lisbon, Portugal.
Correspondence to: Alexis D. Jacq <alexisjacq@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

0

Time to learn

D
is

ta
n
c
e
 t

o
 o

p
ti

m
a
li
ty

Learner trajectory

Expert trajectory

Figure 1. In standard IRL, the goal is to recover the reward from
demonstrated trajectories that follow a stationary optimal policy
(expert trajectory). In the LfL setting, we aim at recovering the
reward from trajectories of a learning agent that is also discovering
the problem. Such trajectories follow a sequence of sub-optimal
policies, assumed to improve with time (learner trajectories).

the question: is Bob able to deduce the rules of the game
and to derive his own strategy that may outperform both
Alice and her grandfather?

Agents modelling is required in various fields of compu-
tational and social sciences in order to predict behaviours
for better coordination. In the reinforcement learning (RL)
paradigm, the behaviour of an agent is determined by a re-
ward function. However, in many cases, it is impossible
for agents to share their reward functions. This is espe-
cially the case in Human-Machine Interaction – or even
Human-Human Interaction, because the complexity of hu-
man motivations hardly translates in terms of quantitative
values. Inverse Reinforcement Learning (IRL) (Ng et al.,
2000) addresses this problem by inferring a reward function
so that it explains an agent’s trajectories in its state-action
space. In the standard approach, the observed agent (the ex-
pert) is thus supposed to follow an optimal policy according
to some unknown reward function and the observing agent
tries to infer that underlying reward function. The optimal-
ity assumption is essential in many scenarios, especially
in training robots at complex tasks requiring help from a
human expert. However, even if the expert’s policy is given,
an infinite number of solutions explains it, including the null
reward function (for which any policy is optimal). Many
different approaches aiming at addressing this issue can be
found in the literature based either on game theory (Syed &
Schapire, 2008), maximum entropy (Ziebart et al., 2008),
relative entropy (Boularias et al., 2011) or supervised learn-
ing (Klein et al., 2013), among others.

Learning from a Learner

Our first contribution is a new setting where an observed
learner (Alice in our example) is assumed to be currently
learning the task and improving its (sub-optimal) behaviour
over time, while an observer (Bob in our example) is trying
to infer the reward that the learner optimizes. Such situa-
tions are found in many multi-agent scenarios where agents
have to mutually learn opponents goals in order to cooperate,
and also in human-robot-based education, when a human
learns a task with the help of a robot. In one hand, it is no
longer possible to consider the observed agent as an expert
(not even to consider stationarity). In the other hand, we
may have more information than from an optimal behaviour.
For example the learner will make (and hopefully correct)
mistakes and will show, more than what must be done, what
must be avoided. With this paper, we focus on this situation
and we introduce the Learning from a Learner problem
(LfL). It formalizes an IRL setting exploiting trajectories of
a learning agent rather than optimal demonstrations of an
expert agent (Fig. 1). In this setting, the observer can poten-
tially learn the true reward provided by the environment and
go beyond pure imitation, outperforming the learner.

Like in IRL, we make the assumption that the learner is
motivated by a reward function encoding its task. LfL thus
aims at inverting policy improvements: from a sequence
of policies assumed to be improving w.r.t. some unknown
reward function, the observer has to recover the reward
function that better explains the successive improvements.
Given the optimization algorithm assumed for the learner,
different approaches and solutions may be investigated. In
our work, we focus on the case where the learner improves
a policy extracted from an underlying associatedQ-function
(see later for a formal definition). From this, our second
contribution is an approach based on entropy-regularized
RL, modelling the learner as performing soft policy im-
provements (Haarnoja et al., 2018). Under this assumption,
we show that the reward function can be extracted from a
single policy improvement step, up to a shaping that does
not affect the optimal policy and which is specific to the
improvement.

We then switch to a more realistic case of study where only
trajectories in the state-action space are observed and the
successively improved policies must be inferred. Our third
contribution is an algorithm that directly learns the reward
from sampled trajectories. To demonstrate the genericity
of our approach under controlled conditions, we study the
case of a learner in a discrete grid world, and that does not
necessarily improve its policy with soft improvements. Ex-
periments on various continuous control tasks show that our
algorithm enables the observer to surpass the performance
the learner obtained while it was observed, without access
to the true reward function. This confirms that the learned
reward is strongly correlated with the one provided by the
environment and can lead to better policies than imitation.

2. Problem setting
The LfL problem involves two agents: a learner (instead of
the expert in IRL) and an observer (instead of the apprentice
in IRL). The observer perceives a sequence of states s ∈ S
and actions a ∈ A performed by the learner, and makes
two assumptions:

• The learner’s behaviour is motivated by a reward func-
tion r : S ×A → R.

• The learner is improving its behaviour according to r
while being observed.

Formally, the learner is assumed to be improving its pol-
icy over time because it learns to solve a Markov Decision
Process (MDP) M = (S,A,P, r, γ) where S is a set of
states,A a set of actions, P(s′|s, a) a transition distribution,
r(a, s) a reward function and γ a discount factor. An ob-
served policy π(a|s) models the probability that the learner
applies an action a while being in a state s. In that context,
the presumed goal of the learner is the maximization of its
expected cumulative discounted reward:

J (π) = Eπ

∑
t≥0

γtr(at, st)

 .
Based on this objective, we say that a policy π2 is an im-
provement of a policy π1 if and only if J (π2) > J (π1).
Then, the goal of the observer is to recover the reward func-
tion r from the observed (supposedly) improving sequence
of policies {π1 . . . πN} of the learner.

3. Greedy improvements
Under the dynamics P of the MDP and a policy π, the
expected cumulative reward for choosing an action a in
state s is given by the Q-function:

Qπ(s, a) = Eπ

∑
t≥0

γtr(st, at)

∣∣∣∣s0 = s, a0 = a

 .
The assumption that improvements are based on a Q-
function makes sense for two reasons: i) many RL algo-
rithms are based on the estimation of such a function, and ii)
it brings the notion of greedy improvement. Given a policy
π1, we define the space G(π1) of greedily-improved policies
as follows:

π2 ∈ G(π1)⇔ ∀s π2(.|s) = argmax
π′(.|s)

Ea∼π′(.|s) [Qπ1(s, a)] .

(1)
By construction, such a pair of policies π1 and π2 meets
the condition of the policy improvement theorem (Sut-
ton et al., 1998), which guarantees that J (π2) > J (π1).

Learning from a Learner

Note that G(π1) may only contain the deterministic policy
π2(a|s) = 1{argmaxaQ

π1(s, a)}. In general, RL agents
are exploring with non-deterministic policies, which makes
the assumption that an observed improvement is a greedy
improvement incompatible with observing an exploring be-
haviour. To address that issue, we place ourselves in the
framework of entropy-regularized reinforcement learning.

4. Recovering rewards from soft
improvements

Entropy-regularized RL prohibits the emergence of deter-
ministic policies (eg., see Neu et al. (2017)). A wide range
of recent deep-RL algorithms use this principle, e.g. (Mnih
et al., 2016; Nachum et al., 2017; Haarnoja et al., 2017;
2018). We thus model the learner under this framework.
Formally, the entropy-regularized objective is:

Jsoft(π) = Eπ

∑
t≥0

γt (r(st, at) + αH(π(.|st)))

 , (2)

whereH refers to the Shannon entropy,

H(π(.|s)) = −Ea∼π(.|s) [lnπ(a|s)] ,

and α is a trade-off factor that controls the degree of regular-
ization. Based on this new objective and following a policy
π, the value of a state-action couple (s, a) is given by the
soft Q-function:

Qπsoft(st, at) =

r(st, at) + Eπ

[∑
l>t

γl−t (r(sl, al) + αH(π(.|sl)))

]
.

It is the unique fixed point of the associated Bellman evalu-
ation equation:

Qπsoft(s, a) = r(s, a)+γEs′,a′ [Qπsoft(s
′, a′)− α lnπ(a′|s′)] .

It can be shown that the space Gsoft(π1) of greedily-
improved policies defined by Qπ1

soft as in Eq. (1) is reduced
to the unique stochastic policy defined by:

π2(a|s) ∝ exp

{
Qπ1

soft(s, a)

α

}
. (3)

Such greedy improvements, known as soft policy improve-
ments, serve as the theoretical foundations of the Soft Ac-
tor Critic (SAC) algorithm (Haarnoja et al., 2018). In the
next section, we will assume that an observed improve-
ment is explained by Eq. (3) and will note it as an operator
SPIr : Π→ Π that depends on the reward function (and the
dynamics) of the MDP:

π2 = SPIr{π1}.

In section 4.2, we will show how to retrieve the reward
function from two consecutive policies, up to an unknown
shaping. But first, we study what kind of shaping will induce
the same optimal policy.

4.1. SPI invariance under reward transformation

Soft policy improvements remain identical under trans-
formations of the reward function of the form r̄(a, s) =
r(a, s) + f(s) − γEs′|s,a [f(s′)]. In other words, reward
shaping (Ng et al., 1999) can be extended to entropy-
regularized RL.
Lemma 1 (Shaping). Let π ∈ Π be any policy, r1 : S ×
A → R and r2 : S ×A → R be two reward functions, and
Qπ,r1soft and Qπ,r2soft be the associated soft Q-functions. Then,
for any function g : S → R, the two following assertions
are equivalent:

• (A) For all state-action couples (s, a):

r1(s, a) = r2(s, a) + g(s)− γEs′|s,a [g(s′)] ,

• (B) For all state-action couples (s, a):

Qπ,r1soft (s, a) = Qπ,r2soft (s, a) + g(s).

Proof. The proof is provided in the appendix.

An immediate consequence of this result is that shaping
the reward this way will not change greedy policies, and
will induce the same (unique, in this regularized framework)
optimal policy.
Theorem 1 (SPI invariance under reward shaping). Let
r1 : S ×A → R, r2 : S ×A → R and g : S → R be such
that

r1(a, s) = r2(a, s) + g(s)− γEs′|s,a [g(s′)] .

Greedy policies are invariant under this reward transform:

SPIr1{π} = SPIr2{π}.

Moreover, both rewards lead to the same optimal policy.
Write π∗,j the optimal policy for reward rj , j = 1, 2, we
have that π∗,1 = π∗,2.

4.2. Inverting soft policy improvements

Given two consecutive policies π̂1 and π̂2 and under the
assumption of soft policy improvement, there exists an
underlying (unknown) reward function r such that π̂2 =
SPIr{π̂1}. The LfL observer’s objective is to extract such a
reward function that would explain the whole sequence of
observed policy changes {π̂1, ...π̂N}. In the ideal case of a
real soft policy improvement the reward function r can be
deduced from two consecutive policies, up to a shaping that
is specific to the improvement.

Learning from a Learner

Theorem 2 (Soft policy improvement inversion). Let π1
and π2 be two consecutive policies given by soft policy
iterations (π2 = SPIr{π1}). Then a reward r̄1→2(s, a)
explaining the soft improvement is given by

r̄1→2(s, a) =

α lnπ2(a|s) + αγEs′ [KL(π1(.|s′)‖π2(.|s′))] ,

with KL(π1(.|s)||π2(.|s)) = Ea∼π1(.|s)[ln
π1(.|s)
π2(.|s)].

Indeed, there exists a function f1→2 : S → R such that

r̄1→2(s, a) = r(s, a) + f1→2(s)− γEs′ [f1→2(s′)] ,

and r̄1→2 has the same unique optimal policy as r.

Proof. The proof is provided in the appendix.

4.3. Recovering state-only reward functions

If a shaping does not affect the optimal policy of the entropy-
regularized problem, it depends on the dynamics and may
not be robust to dynamic changes (Fu et al., 2017). In
the case of a state-only ground-truth reward function, one
simple solution consists in searching for a state-only reward
r̄ : S → R and a shaping f : S → R such that:

r̄1→2(s, a) = r̄(s) + f(s)− γEs′∼P(.|a,s) [f(s′)]

= r̄(s) + sh(s, a).
(4)

If Eq. (4) holds everywhere, then r̄ equals r̄1→2 up to a
shaping, and so equals the ground truth r up to a shaping.
For instance, r̄ and sh can be obtained by minimizing:

L(r̄, sh) =
∑
s,a

(
r̄1→2(s, a)− r̄(s)− sh(s, a)

)2

.

This loss is convex in the case of linear parameterisations
of r̄ and sh and particularly in tabular discrete MDPs. Once
Eq. (4) holds, r̄ is known to recover the ground truth re-
ward function up to a constant under deterministic environ-
ments (Fu et al., 2017). However, in our general approach,
we do not focus on state-only reward function and, except in
the empirical verification of this statement in our result sec-
tion 6.1, we aim at recovering a state-action reward function
r̄(s, a).

Therefore, knowing exactly two consecutive policies and the
whole model (the dynamics P , the discount factors γ and
the trade-off α) we can recover the reward function up to a
shaping, and even up to a constant if the reward is known to
be a state-dependent function.

5. Learning from improving trajectories
In practice, the observer has no access to the learner’s se-
quence of policies {π1, ...πK}, but can only see trajectories

of states and actions explored by the learner. Let’s assume
that the observer is given a set of trajectories {D1, ...DK},
following a set of unknown improving policies:

D1 = {(a11, s11), . . . , (aT1 , s
T
1)} ∼ π1

...

DK = {(a1K , s1K), . . . , (aTK , s
T
K)} ∼ πK

Also in practice, the learner may follow a different learning
approach than soft policy iterations.

5.1. Trajectory-consistent reward function

The immediate solution is to infer the sequence of poli-
cies {π̂1, ...π̂K}, for example by likelihood maximization,
and then to learn a consistent reward function that ex-
plains all policy improvements. Following Theorem 2,
at each improvement, a first step is to recover the se-
quence of improvement-specific shaped reward functions
{r̄1→2, . . . , r̄K−1→K}.

5.2. Learning the target rewards

In practice, we found that training the targets r̄k→k+1(s, a)
with separated networks for the policy terms πk+1(a|s)
and the divergence terms KL(πk(.|s′)‖πk+1(.|s′)) reduces
the variance of the targets and improves the quality of the
learned rewards.

Policies are learned by maximizing the likelihood of trajec-
tories with parameterized distributions π̂θk , with an entropic
regularizer that prevents the learned policy from being too
deterministic,

J ({θk}) =

K−1∑
k=1

∑
s,a∈Dk

ln π̂θk(a|s)− λH(π̂θk(.|s)).

Note that this regularization is not linked to the entropy used
to soften the reinforcement learning objective of Eq. (2). Di-
vergences are learned afterward by training a parameterized
function ρωk(s) to minimize the loss:

L({ωk}) =

K−1∑
k=1

∑
s,a∈Dk

(
ρωk(s)− ln

π̂θk(a|s)
π̂θk+1

(a|s)

)2

.

5.3. Consistency loss

Then, we would like to have Eq (4) holding at each improve-
ment k → k + 1 with one consistent function r̄φ. This can
be obtained by minimizing over φ and a set of parameters
{ψk} the following loss:

L(φ, {ψk}) = (5)
K−1∑
k=1

∑
s,a,s′∈Dk

(
r̄k(s, a, s′)− rφ(s, a) + shψk(s, s′)

)2

,

Learning from a Learner

Algorithm 1 Recovering trajectory-consistent reward
input trajectories {D1, . . . ,DN}

1: for i = 1 to Nθ do {train target policies π̂θk}
2: ∀k, θk ← θk + ηθ∇θkJ ({θk})
3: end for
4: for i = 1 to Nω do {train target divergences ρωk}
5: ∀k, ωk ← ωk − ηω∇ωkL({ωk})
6: end for
7: for i = 1 to Nφ0

do {initialize reward rφ = lnπφ}
8: φ← φ+ ηφ∇φ

∑
a,s∼DK lnπφ(a|s)

9: end for
10: for i = 1 to Nφ;ψ do {train reward and shaping}
11: φ← φ− ηφ∇φL(φ, {ψk})
12: ∀k, ψk ← ψk − ηψ∇ψkL(φ, {ψk})
13: end for

where r̄k(s, a, s′) = απθk+1
(a|s) + αγρωk(s′) and

shψk(s, s′) = fψk(s) − γfψk(s′). Notice that contrary
to Section 4.3, we consider a reward function that de-
pends on state-action pairs. This makes initialization eas-
ier (see Section 5.4) and allows separating shapings that
are improvement-dependant from the core common reward.
This can also give better empirical results, if the dynamics
does not change (Fu et al., 2017).

In the case of discrete MDPs with tabular parameters for φ
and {ψk}, this method relies on policy inference accuracy:
the longer the trajectories, the closer the reward function
to the ground truth. However, with larger environments,
performing directly the minimization of the loss L(φ, {ψk})
results in local minima that fail at generalizing the rewards
to unknown states.

5.4. Reward initialization

One simple and efficient trick to prevent this issue con-
sists in initializing the reward function with any standard
imitation learning process based on the last observed tra-
jectory. For instance, assuming that the last two trajecto-
ries are optimal and by consequence identical, the result of
Theorem 2 would give lnπK(a|s) ∝ r̄K(s, a), so an ini-
tialization of the reward function can be obtained under the
form rφ(s, a) = lnπφ(a|s) by looking for the parameter
φ that maximizes the log-likelihood of the last trajectory.
The resulting reward function is then improved by searching
for the set of parameters φ and {ψk} that minimize the loss
given by Eq. (5) over all observed trajectories, as shown in
Algorithm 1.

6. Experiments
The quality of a recovered reward function r̄ is measured by
the maximal score of an agent trained in the same environ-
ment but rewarded by r̄ instead of the true rewards. While

 -1

Reset

 -1

Start

 0
+10

Reset

-12-1 -1 -1

-1-1-1-1

-1

-1 -1

-1 -1 -1

-1-1-1

-1 -1 -1

-1

Figure 2. Grid world. The middle point is avoided because of
the dynamics rather than the associated reward. At the down-left
corner, a small reward attracts the path that leads to the objective,
situated at the down-right corner.

Table 1. Comparison of score J (π) between the learner’s two
policies and an observer using an optimal policy based on the
recovered state-action reward r̄1→2 or the state-only reward r̄φ
after regression described in section 4.3. Regrets are computed
with respect to the maximal entropy-regularizeed return.

agent used reward policy score regret
optimal r π∗soft 5.68 0
learner r π1 -19.7 25.4

r π2 0.72 4.95
observer r̄1→2 π∗soft 5.68 .e-13

r̄φ (state-only) π∗soft 5.68 .e-10

standard IRL recovers a reward function that ideally leads
an apprentice to the observed expert’s policy, we expect a re-
ward recovered from LfL to lead an observer to outperform
the observed learner, which was stopped before reaching
maximal performance.

6.1. Grid world

Fig. 2 displays the discrete and deterministic grid MDP we
consider for illustrating our theoretical results. We use a
discount factor γ = 0.96 and a trade-off factor α = 0.3.
Our first verification involves two policies exactly known,
one being uniform over the action space and the other being
the immediate soft policy improvement:

π1(.|s) = U(A) and π2 = SPIr{π1}.

We apply Theorem 2 to recover a reward function r̄1→2 and
we verify that:

• the score of an agent trained with r̄1→2 is maximal
(Table 1);

• a regression searching for a state-only reward function
r̄φ recovers the ground truth (Fig. 3).

We also use this discrete environment to show the genericity
of our model w.r.t. the learner’s RL algorithm, compar-

Learning from a Learner

0 5 10 15 20

0

2

0 5 10 15 20

0

2

0 5 10 15 20

0

2

r(s,a)

r1->2(s,a)

r�(s)

state space

a
c
ti

o
n
 s

p
a
c
e

Figure 3. Ground truth reward (up), state-action function r̄1→2

from Theorem 2 (middle) and state function r̄φ after regression
described in section 4.3 (down). r̄φ recovers the ground truth up
to a small constant (not visible on the color scale).

Table 2. Comparison of score J (π) between the learner’s best pol-
icy and an observer using an optimal policy based on the recovered
reward function r̄φ from observed trajectories of 1000 state-action
couples at each improvement. Scores are averaged over ten runs.
The second column reports the number of observed improvements
(K) performed by the learner for each algorithm.

learner K learner score observer score
SPI 3 4.18 4.68 ± 0.24
SVI 20 3.59 4.73 ± 0.61

Q-learning 50 3.99 ± 0.88 3.65 ± 0.78
rand. impro. 10 1.76 ± 2.64 3.95 ± 0.49

ing the results from different RL algorithms used by the
learner: soft policy iterations (SPI) (as expected by the
model), soft value iterations (Haarnoja et al., 2017) (SVI),
Q-learning (Watkins, 1989) and random improvements, gen-
erated by randomly interpolating between the uniform pol-
icy and the optimal policy. In all cases, the observer mod-
els the learner as performing soft policy iterations with
αmodel = 0.7, while the true parameter used for soft value
and policy iterations as well as for the score evaluations is
α = 0.3. The policy associated to our Q-learning imple-
mentation is a softmax distribution exp{Qα }. Unlike the
previous experiment, here the observer has no access to the
exact policies. Instead, at each learner’s policy update, the
observer is provided with a trajectory of 1000 new sampled
state-action couples and we use Algorithm 1 to recover a
state-action reward r̄φ(s, a). Results are reported in Table 2.
It shows that LfL is rather agnostic to the actual learner’s
RL algorithm and the observer outperforms or equals the
learner, whatever the original RL algorithm is.

6.2. Continuous control

To evaluate how our approach holds when dealing with
large dimensions, we use the same experimental setting
on continuous control tasks taken from the OpenAI gym
benchmark suite (Brockman et al., 2016). The learner’s
trajectories are obtained using Proximal Policy Optimization
(PPO) (Schulman et al., 2017). Using PPO is motivated by
two reasons: the learned policy is stochastic (as expected in
our entropy-regularization model) and it performs rollouts
of exploration using fixed static policies, which helps an
observer to infer the sequence of policies (the problem
is harder when the observed trajectories are continuously
updated after each action, for example as with SAC). In
order to accelerate the learner’s improvements, we parallel
32 environment explorations at each step. However, the
trajectories given to the observer only contain 1 of these
32 explorations, resulting in observations containing 2048
state-action pairs for each improvement.

Once the observer has recovered a reward function using
Algorithm 1, it is also trained using PPO and paralleling 32
explorations at each step. The observer starts with a policy
that clones the learner’s last observed rollout by maximiz-
ing the likelihood of the trajectory. In Fig. 4 we compare
the evolution of the learner’s score during its observed im-
provements, and the evolution of the observer’s score when
trained on the same environment and using the recovered
reward function (comparison is done on the original envi-
ronment reward). We also compare in Table 3 the maximal
observed score of the learner with the final score of the
observer, and the score that would be obtained using stan-
dard IRL based on the last observed policy of the learner.
IRL scores are taken from figures in (Kostrikov et al., 2018)
(Discriminator Actor Critic, or DAC) and tables from (Fu
et al., 2017) (Adversarial Inverse Reinforcement Learning,
or AIRL).

We normalize scores by setting to 1 the score of the last
observed policy and to 0 the score of the initial one, in order
to measure improvements. Yet, it is worth noting that the
corresponding absolute scores are different for IRL and LfL,
as we tend to stop earlier the learning agent. However, it is
quite plausible that the expert trajectories used in these IRL
papers are not optimal, and could be improved. Anyway,
the goal of these IRL methods is to imitate a behavior, they
are not designed to do better than the observed agent, and
the result of Table 3 are thus quite expectable.

On most of the environments, LfL learns a reward that
leads to better performance for the observer than for the
last observed policy from the learner. LfL only fails at
recovering a reward function for the Hopper environment.
This failure could come from the fact that this simulated
robot often falls on the ground during the first steps of
training, resulting in strongly absorbing states perceived as

Learning from a Learner

million steps

Reacher

million steps

HalfCheetah

million steps

Hopper

milion steps

Ant

Figure 4. (Red) Evolution of the learner’s score during its observed
improvements and (Blue) evolution of the observer’s score when
training on the same environment and using the recovered reward
function. Scores are normalized with respect to the rewards associ-
ated with the first and last observed behaviour (0 corresponds to
the first observed policy while 1 corresponds to the last observed
policy). The observer starts with a policy that clones the learner’s
last observed policy by maximizing the likelihood of the last tra-
jectory (in that way, the observer has already used the number of
steps performed by the learner to train itself and does not start
from scratch).

rewarding by the observer. Assessing this possible issue is
left for future work.

6.3. Implementation details

In the grid-world experiments, we use tabular representa-
tions for φ and ψk. In that simple case, KL divergence
terms are explicitly computed from estimated policies and
dynamics instead of using a third set of parameters, and the
reward initialization step is not necessary. Policy estimation
is performed by maximum likelihood with tabular param-
eters θk as described in Algorithm 1. We use 10 gradient
steps containing the full observed set of transitions for each
trajectory Dk. For the reward consistency regression, we
use 200 gradient steps, each one summing the losses across
all observed improvements. In both policy and reward re-
gressions, we use Adam gradient descent (Kingma & Ba,
2014) with learning rate 1e−3. The random improvements
are generated by randomly interpolating 15 points between
the uniform and the optimal policies, and the 10 improve-
ments in Table 2 mean that we provide the observer with
sampled trajectories from the 10 first policies.

In the continuous control experiments, we use a neural net-
work with one hidden layer for parameters ψk and ρk, both
sharing across all k the latent layer containing 128 units with
hyperbolic tangent activation. We use the actor parameters
as described in PPO’s original implementation (Schulman

Table 3. Comparison between standard IRL based on the best roll-
outs and our LfL solution based on the whole learner’s observed
improvements. To obtain AIRL results, the observer is given 50
trajectories and to obtain the reported DAC results, the observer
needs at least 4 trajectories. AIRL and DAC values are manu-
ally reported from the respective paper results and are obtained
with near-optimal experts trajectories (corresponding to 1). In our
LfL setting, the learner has access to only one rollout of 2048
state-action couples at each improvement (the last improved policy
corresponds to 1).

Environment AIRL DAC LfL (inverted SPI)
Reacher / 0.99 1.54 ± 0.11
Hopper / 0.99 -0.99 ± 0.78

HalfCheetah 1.01 1.15 1.40 ± 0.25
Ant 0.80 1.12 1.53 ± 0.60

et al., 2017) for reward parameters φ as well as for policies
parameters θk. Our PPO implementation conserves the set
of hyperparameters described in the original paper, at the ex-
ception that we parallel 32 environment explorations at each
step. All gradient descents of Algorithm 1 are performed
across batches containing the whole 2048 state-action pairs
for each improvement, using Adam descent with learning
rate 1e−3. Like in the discrete case, the algorithm is run by
modelling SPI with αmodel = 0.7. We use 1000 steps for the
policy regressions, 100 steps for the KL divergence regres-
sions, 3000 steps for the reward initialization and 1000 steps
for the reward consistency regression. Depending on the
environment, we provide the observer with different sets of
learner trajectories. For Reacher that converges quickly we
select early PPO updates from 10 to 20 while for HalfChee-
tah we rather select updates from 30 to 40. For both Hopper
and Ant which give more noisy trajectories, we select up-
dates from 10 to 30 with an increment of 5 updates. The
observer is trained across 30 updates of PPO, summing a
total of 2 million environment steps.

7. Related work
To the best of our knowledge, observing a sequence of poli-
cies assumed to improve in order to recover the reward
function is a new setting. Here the goal is not to imitate
the observed agent as in standard imitation learning or IRL,
since it is not supposed to follow an optimal behaviour
(even at the end of the observation). However, we discuss
links to these two fields and especially to IRL (Ng et al.,
2000), since these methods are sharing the aim of learning
a reward function from observations of an other agent’s
behaviour. im In this work, we place ourselves in the frame-
work of entropy-regularized RL and model the observed
policies as following a softmax distribution weighted by
a state-action value function. This model alleviates the
ill-posed nature of IRL. It is actually induced by the hy-

Learning from a Learner

pothesis of maximum entropy (Ziebart et al., 2008). Re-
cent approaches, based on generative adversarial networks
(GANs) (Goodfellow et al., 2014) also use the entropy-
regularization framework to solve the imitation learning
problem (explicitly mentioning the learning of a reward or
not). Generally speaking, these methods train an apprentice
with a discriminator-based reward function optimized to
induce policies that match an observed behavior. This is the
basis of Generative Adversarial Imitation Learning (Ho &
Ermon, 2016) (GAIL) and GAN-based Guided Cost Learn-
ing (Finn et al., 2016) (GAN-GCL). GAN-GCL has the
advantage to propose a structured discriminator D(τ) for
an observed trajectory τ , that directly translates the reward
function R(τ) = ln(1 − D(τ)) − lnD(τ). Adversarial
Inverse Reinforcement Learning (Fu et al., 2017) improves
this reward by learning, with the discriminator, both the
reward function and the possible shaping as a separated
state-function. Our work shares similarities with this last
approach as we also learn separately the reward from the
shaping. Discriminator Actor critic (Kostrikov et al., 2018)
(DAC) suggests a correction to the bias created by absorb-
ing states (that we mentioned in section 6.2), and combines
Twin Delayed Deep Deterministic policy gradient (Fujimoto
et al., 2018) (TD3) with AIRL, resulting in a improvement in
sample-efficiency. Another variant of AIRL, Empowerment-
based Adversarial Inverse Reinforcement Learning (Qureshi
et al., 2019) (EAIRL) uses a structure for the shaping term
based on a quantification of the observed agent’s empow-
erment, defined by its ability to influence its future. This
modification allows to learn disentangled state-action re-
ward functions that significantly improve transfer learning
results.

Our method to solve LfL is split in two steps of supervised
classification: one estimates the policies, the other learns
the rewards based on the policy discriminating losses (the
log probabilities). This structure is sharing close similarities
with Cascaded Supervised IRL and Structured Classification
for IRL (SCIRL) (Klein et al., 2012; 2013) but fundamen-
tally differs by the fact that LfL doesn’t assume the Bellman
optimality but soft policy improvements.

Policy improvements is also somehow used in preference-
based IRL (Christiano et al., 2017; Ibarz et al., 2018) where
a learning agent frequently asks a human to chose the best
between two policies, and improves its knowledge about the
reward function from this preference. Our solution for LfL
could certainly be used for human preference-based learning
and vice-versa. Yet this work differs from LfL in to ways: i)
the agent inferring the reward function needs information
about its own policies, and ii) the learned reward function
has no intent to approach the ground truth even up to a
shaping. Similarly, score-based IRL (El Asri et al., 2016)
that learns a reward from rated trajectories requires human
intervention to annotate trajectories and doesn’t guarantee

to recover the actual environment reward.

Goal recognition in agent modelling problems is another
field related to this work. In multi-agent learning problems,
modelling the opponents goal helps at finding rich and adap-
tive social behaviour like cooperation or negotiation. It is
worth mentioning Learning with Opponent Learning Awar-
ness (Foerster et al., 2018) (LOLA) where agents assume
opponents are following a policy-gradient algorithm to pre-
dict and shape their own learning steps. LOLA supposes
that opponents are motivated by symmetric goals and does
not directly address the goal recognition problem. A simi-
lar opponent modelling approach, Modeling Others using
Oneself (Raileanu et al., 2018), suggests to learn the goal of
the opponent into a latent and arbitrary representation, that
would explain the observed updates as if this goal represen-
tation was given as input of the observing agent. Like in LfL,
the goal is inferred from the observed agent’s sub-optimal
learning behaviour. However, this approach models qualita-
tive goals and requires to experience “oneself” rewards in
order to model others’ goals.

8. Conclusion
In this paper, we introduced the “Learning from a Learner”
(LfL) problem, a new setting that aims at recovering a re-
ward function from the observation of an agent that im-
proves its policy over time. Unlike standard Inverse Re-
inforcement Learning approaches, LfL does not intend to
imitate the observed behaviour, but to learn a reward func-
tion that leads to actually solve the (unknown) task and
hence to potentially outperform the observed behaviour.

We propose a first approach to address this problem, based
on entropy-regularized reinforcement learning. For this
purpose, we model the observed agent (the learner) as per-
forming soft policy improvements and we show that under
this assumption, it is possible to recover the actual reward
function up to a shaping. We propose an algorithm that
alleviates this shaping by learning a reward function which
explains consistently a set of observed trajectories generated
by improving policies. Our experiments show the rightness
of our theoretical assertions as well as the genericity of the
method when facing different types of RL agents and in the
case of continuous state-action spaces.

Although we do not claim we solved the general LfL prob-
lem, we consider the results presented in this paper as inspi-
rational for further works. They indeed show that observa-
tion of a learning agent may lead to enhanced agents that
outperform their tutor. To go beyond our findings, we think
that our method can be significantly improved by addressing
common IRL issues such as absorbing states bias or using
learner’s empowerment. Also, different models than soft
policy improvement could be worth investigating.

Learning from a Learner

References
Boularias, A., Kober, J., and Peters, J. Relative entropy

inverse reinforcement learning. In Proceedings of the
Fourteenth International Conference on Artificial Intelli-
gence and Statistics, pp. 182–189, 2011.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Advances in Neural Information
Processing Systems, pp. 4299–4307, 2017.

El Asri, L., Piot, B., Geist, M., Laroche, R., and Pietquin,
O. Score-based inverse reinforcement learning. In Pro-
ceedings of the International Conference on Autonomous
Agents and Multiagent Systems, pp. 457–465, 2016.

Finn, C., Christiano, P., Abbeel, P., and Levine, S. A con-
nection between generative adversarial networks, inverse
reinforcement learning, and energy-based models. arXiv
preprint arXiv:1611.03852, 2016.

Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S.,
Abbeel, P., and Mordatch, I. Learning with opponent-
learning awareness. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, pp. 122–130. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2018.

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248, 2017.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. arXiv
preprint arXiv:1802.09477, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
arXiv preprint arXiv:1702.08165, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems, pp. 4565–4573, 2016.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and
Amodei, D. Reward learning from human preferences
and demonstrations in atari. In Advances in Neural Infor-
mation Processing Systems, pp. 8022–8034, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Klein, E., Geist, M., Piot, B., and Pietquin, O. Inverse
reinforcement learning through structured classification.
In Advances in Neural Information Processing Systems,
pp. 1007–1015, 2012.

Klein, E., Piot, B., Geist, M., and Pietquin, O. A cascaded
supervised learning approach to inverse reinforcement
learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp.
1–16. Springer, 2013.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and
Tompson, J. Discriminator-actor-critic: Addressing sam-
ple inefficiency and reward bias in adversarial imitation
learning. In International Conference on Representation
Learning, 2018.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937, 2016.

Nachum, O., Norouzi, M., Xu, K., and Schuurmans, D.
Bridging the gap between value and policy based rein-
forcement learning. In Advances in Neural Information
Processing Systems, pp. 2775–2785, 2017.

Neu, G., Jonsson, A., and Gómez, V. A unified view of
entropy-regularized markov decision processes. arXiv
preprint arXiv:1705.07798, 2017.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, volume 99, pp. 278–287, 1999.

Ng, A. Y., Russell, S. J., et al. Algorithms for inverse
reinforcement learning. In Icml, pp. 663–670, 2000.

Qureshi, A. H., Boots, B., and Yip, M. C. Adversarial
imitation via variational inverse reinforcement learning.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HJlmHoR5tQ.

Raileanu, R., Denton, E., Szlam, A., and Fergus, R. Mod-
eling others using oneself in multi-agent reinforcement
learning. arXiv preprint arXiv:1802.09640, 2018.

https://openreview.net/forum?id=HJlmHoR5tQ
https://openreview.net/forum?id=HJlmHoR5tQ

Learning from a Learner

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sutton, R. S., Barto, A. G., et al. Reinforcement learning:
An introduction. MIT press, 1998.

Syed, U. and Schapire, R. E. A game-theoretic approach to
apprenticeship learning. In Advances in neural informa-
tion processing systems, pp. 1449–1456, 2008.

Watkins, C. J. C. H. Learning from delayed rewards. PhD
thesis, King’s College, Cambridge, 1989.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Learning from a Learner

A. Proof of Lemma 1
Using the Bellman evaluation equation, we have

Qπ,r2soft (s, a) = r2(s, a) + γEs′,a′ [Qπ,r2soft (s′, a′)− α lnπ(a′|s′)] .

⇔ Qπ,r2soft (s, a) + g(s)︸ ︷︷ ︸
=Q

π,r1
soft (s,a)

= r2(s, a) + g(s)− γEs′ [g(s′)]︸ ︷︷ ︸
r1(s,a)

+Es′,a′

Qπ,r2soft (s′, a′) + g(s′)︸ ︷︷ ︸
Q
π,r1
soft (s′,a′)

−α lnπ(a′|s′)

⇔ Qπ,r1soft (s, a) = r1(s, a) + γEs′,a′ [Qπ,r1soft (s′, a′)− α lnπ(a′|s′)] .

This proves the stated result.

B. Proof of Theorem 1
Let π′ = SPIr1{π}. We have, for any state-action couple,

π′(a|s) =
exp{Qπ,r1soft (s, a)}

Z(s)

=
exp{Qπ,r1soft (s, a) + g(s)}

Z(s) exp g(s)

=
exp{Qπ,r2soft (s, a)}

Z ′(s)
.

The last equations means that π′ = SPIr2{π}, and so SPIr1{π} = SPIr2{π}. To see that both rewards provide the same
optimal policy, it is sufficient to notice that an optimal policy is the unique policy being greedy respectively to itself, that is
π∗ = SPIr{π∗}. So, SPIr1{π} and SPIr2{π} have necessarily the same fixed point.

C. Proof of Theorem 2
Let π1 and π2 be two successive policies such that π2 = SPIr{π1}. This means that, for any state s and action a, we have:

π2(a|s) =
exp{Qπ1

soft(s, a)}
Z1(s)

where Z1(s) is a normalization factor. Taking the logarithm of this expression, we get:

α lnπ2(a|s) = Qπ1

soft(s, a)− lnZ1(s) = Qπ1

soft(s, a) + f(s).

According to Lemma 1, this means that α lnπ2(a|s) is the Q-function associated to the shaped reward function r̄(s, a) =
r(s, a) + f(s)− γEs′ [f(s′)] for the policy π1. Using the fact that this Q-function satisfies the Bellman equation, we have

α lnπ2(a|s) = r̄(s, a) + γEs′,a′ [α lnπ2(a′|s′)− α lnπ1(a′|s′)]
= r̄(s, a)− αγEs′ [KL(π1(.|s′)‖π2(.|s′))]

⇔ r̄(s, a) =α lnπ2(a|s) + αγEs′∼P(.|a,s) [KL(π1(.|s′)‖π2(.|s′))] .

The fact that both r and r̄ have the same optimal policy is due to theorem 1. This proves the stated result.

