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Abstract—Measuring “how much the human is in the inter-
action” – the level of engagement – is instrumental in building
effective interactive robots. Engagement, however, is a complex,
multi-faceted cognitive mechanism that is only indirectly observ-
able. This article formalizes with-me-ness as one of such indirect
measures. With-me-ness, a concept borrowed from the field of
Computer-Supported Collaborative Learning, measures in a well-
defined way to what extent the human is with the robot over
the course of an interactive task. As such, it is a meaningful
precursor of engagement. We expose in this paper the full
methodology, from real-time estimation of the human’s focus of
attention (relying on a novel, open-source, vision-based head pose
estimator), to on-line computation of with-me-ness. We report
as well on the experimental validation of this approach, using
a naturalistic setup involving children during a complex robot-
teaching task.

Index Terms—Human-Robot Interaction; Visual Focus of At-
tention; With-me-ness; Real-time Head Pose Estimation.

I. INTRODUCTION

Building capable social agents requires to endow them with
a range of perceptual capabilities: however, while face and
object tracking and recognition, path planning, speech recog-
nition or task learning are some of the current major research
directions, existing literature tends to evaluate each of these
algorithms in their own metric space, without considering the
interaction quality at a global level. Anzalone et al. [1] have
recently argued in favor of such a global evaluation, and they
propose to assess these algorithms in terms of their capability
to obtain the desired effect in a human-robot interaction
context. They correspondingly propose metrics built around
the measurement of engagement as indicator of the quality of
the experience.

“Engagement”, the cognitive, affective and behavioral state
of interaction with a computer application that “makes the user
want to be there” [2], has actively been studied in a diverse
set of domains. Specifically in robotics, several variables and
social signals have been proposed in the literature to quantify
it. A recent review of these is presented in [3].

For instance, [4] proposes to predict children’s level of
engagement by integrating non-verbal cues (gaze and smiles)
with the current state of the interaction in a Bayesian model.
While they report a high level of accuracy, their approach
requires post-hoc video annotations, and is not applicable to
on-line engagement assessment. Similarly, Baxter et al. [5]

posit that the measure of the direction and timing of gaze
in child-robot interactions is a proxy for engagement and
attribution of social agency. However, they also conduct these
measures as post-hoc analyses. [6] model the user’s interest
and engagement with a virtual agent by tracking eye gaze
and head direction. Similarly, [7] estimates the user’s engage-
ment with a conversational agent based on the analysis of
gaze patterns. In [8], a computational model based on the
recognition of connection events such as directed gaze, mutual
facial gaze is proposed. Not relying on gaze, [9] focus only
on the back or trunk posture as a determining factor for the
assessment. Finally, a recent study with social robots in face-
to-face scenarios [1] explores a set of metrics based on non-
verbal cues but they also underline possible limitations in long-
term scenarios.

The variety of these approaches reflects the fact that en-
gagement remains a broad concept, fairly ill-defined and thus
difficult to operationalize. Therefore, instead of introducing
“yet another metric of engagement”, we introduce the more
specific concept of with-me-ness [10]: to what extent the
human is “with me”, the robot, during the interaction.

We measure with-me-ness by comparing the attentional
focus of the human (as estimated in real-time by the robot)
with the expected, a priori targets of attention elicited by the
task at hand.

The following sections expose the full methodology, starting
with the estimation of attention: we present in the next section
a novel method for on-line estimation of the focus of attention
based on fast 6D head pose estimation. We validate this
technique in section III with a real-world field study involving
children. Section IV formally introduces the concept of with-
me-ness. We present how to compute it over the course
of the interaction to eventually build a new in-the-moment
measurement of the quality of interaction. We finally validate
and discuss this metric by comparing it to manual post-hoc
annotations of the video-recordings of the interaction.

II. VISUAL ATTENTION ASSESSMENT

A. Related Work

The relation between one’s focus of attention and what
he/she is looking at has long been established [11], [12],
and more specifically, the existing relationship between gaze
and attention during social interaction, and the related gaze



patterns, has been part of classic textbooks like [13] for
decades. As such, there is little doubt that measuring the
direction of gaze is a useful proxy to estimate the (visual)
focus of attention of a social agent, and indeed this is one of
the basic tools used in social psychology.

Estimating attention using gaze is not new to robotics either.
A recent survey by Ruhland et al. [14] gives in a broad
overview of eye gaze research in HCI and social robotics.
It remains however an active field of research, as illustrated
by several recent publications [1], [5], [15]. Performing such
a measure on a robot, in real-time, and in ecologically valid
environments (which rules out bulky or invasive apparatus like
eye-trackers, or techniques requiring fine calibration and/or
static interactions) remains a challenge in HRI.

Looking at techniques that both operate on-line and have
been deployed in field experiments, one finds that most
approaches rely on head pose estimation alone (no eye gaze
tracking) and are generally based on depth sensors (RGB-D).
Fanelli et al. provides an overview of these approaches in [16],
and recent examples include [1], [5].

Approaches based on monocular 2D vision have been
explored as well [6], with however limited robustness to oc-
clusions or lightning conditions, and over-reliance on tracking
to maintain real-time performances. Our work relies on recent
advances in template-based face alignment [17] that allows fast
(in the order of a few milliseconds) facial feature extraction
on 2D images, combined with 3D model fitting, to obtain
a fast, robust and stable 6D head pose estimate, that we
successfully deployed in field experiments involving child-
robot interactions.

We derive the field of attention from the head pose: this is
supported by previous work, like [18] that shows that the head
orientation’s contribution in overall gaze direction is 68.9%,
which further translates into a 88.7% accuracy in estimating
the focus of attention from head pose only in a particular
meeting scenario (using eye and head tracking).

While previous preliminary research in HRI seemed on the
contrary to indicate that deriving attentional focus from head
pose alone would not be accurate enough [15], we found in
our case acceptable levels of agreement between the robot
observations and manual post-hoc annotations, as detailled
hereafter.

B. Head Pose Estimation

As explained, we derive the visual field of attention from
the head pose. Our technique only involves a single monocular
RGB camera used for facial feature extraction, and a static
simplified 3D mesh of a human head. 68 facial features are
extracted using a fast template-based face alignment algorithm
by Kazemi and Sullivan [17], as implemented in the open-
source dlib library [19]. Eight of these features (chosen to
be far apart and relatively stable across age and gender) are
then matched to their 3D counterparts (Figure 1) and we rely
on an iterative PnP algorithm (OpenCV’s implementation) to
compute the translation and rotation of the head with respect
to the camera frame. With this approach, knowing the intrinsic
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Fig. 1. The 6D head pose is estimated by fitting a 3D model of an adult head
(left) onto the detected 2D features of the face (right). We rely on an iterative
PnP algorithm, using 8 correspondence pairs (three are depicted: the sellion
– the nasal depression –, the left tragion and the menton). The 3D origin of
the head is set at the sellion.

Fig. 2. Head pose results on images captured during a field experiment.
Detection of face features (and therefore, estimation of the pose) is robust to
significant occlusions and face rotations.

parameters of the camera (calibrated camera) is required for
an accurate estimation of the absolute 3D localization of the
head.

Besides being fast, the face alignment algorithm has been
found to perform well in terms of robustness, including in a
range of difficult situations encountered in field experiments,
like partial occlusions or large head rotations (we have mea-
sured the default dlib model to be able to track a face
with rotations up to ±40◦ horizontally and ±30◦ vertically).
Figure 2 shows a selection of such difficult scenes with one
child.

C. Field & Focus of Attention

We model the field of attention as the central region of
the field of view. The field of view itself is approximated to a
cone spanned from the nasal depression (sellion) of the human
face. Different dimensions for the human field of view can
be found in the literature: Holmqvist [20] models it with an
horizontal aperture of ±40◦ and a vertical aperture of ±25◦,
while Walker [21] for instance suggests 60◦ up, 75◦ down, 60◦
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Fig. 3. Screenshot of the real-time attention estimation system. The
visual field of attention is approximated to a 40◦ cone, spanning from
the head’s sellion. The objects whose 3D pose intersect with this cone
are considered in focus.

inwards (towards the nose) and 95◦ outwards. Previous work
on visual perspective taking for social robotics [22] model the
field of attention as a cone of 30◦. We retained in this work a
slightly wider aperture of 40◦. We then approximate the visual
focus of attention (VFoA) of the human to the objects which
lie inside this field of attention (Figure 3). At a given time,
more than one object can therefore be in focus.

Our implementation has two limitations: objects are approx-
imated to points (they are considered in focus if their origin
lies in the field of attention), and we do not check actual
visibility: one object could be hidden by another, it would still
be considered as in focus. We did not address these limitations
since our experimental setup (involving relatively small objects
with no occlusions) did not necessitate it. Techniques for more
accurate assessment of the visual perspective of the human
peer can be found in [22] for instance.

Within these limitations, computing if object A(xA, yA, zA)
is in the field of attention of the human requires first to
transform the coordinates A(XA, YA, ZA) into the frame of the
face, and then to verify the simple inequality

√
Y 2
A + Z2

A <

tan
(

fov
2

)
·XA (with fov the aperture, and assuming that the

main axis ~x of the field of attention points forward).

Our approach assumes that the pose of the objects of interest
are available to the system: as described in section III-C, our
implementation relies on the ROS TF framework to manage
and make available to all software modules the list of poses
of existing objects (represented as frames), and dedicated
perception modules are in charge of publishing up-to-date
informations regarding the location of the objects of interest
(the so-called situation assessment). Due to the nature of
the experiment, most of the points of interest considered for
the experimental validation presented hereafter are static with
respect to the robot, thus simplifying the scene perception.

III. EXPERIMENTAL VALIDATION

As presented above, we use the 6D head pose as an
approximation of the actual gaze direction, and we further
approximate from here the participant’s field of attention. The
assumption that such an approximation of the field of attention
allows to derive the actual focus of attention needs to be vali-
dated experimentally. Our proposed experiment involves child-
robot interactions in the context of handwriting remediation.
This section details the experimental procedure and presents
our results.

A. Experimental Procedure

The experiment, part of the CoWriter project [23], involves a
robot which tries to engage a child in handwriting tasks using a
learning by teaching paradigm (i.e. the child is the teacher, and
he/she attempts to improve the robot’s handwriting). A tactile
tablet is used as writing support. Figures 4 and 5 illustrate the
experimental setup: a face-to-face child-robot interaction with
an (autonomous) Aldebaran NAO robot, in the presence of a
facilitator (one of the researchers).

Facilitator

Observer Robot

Tablet

Secondary

tablet

Headtracking
camera

Fig. 4. Experimental setup: face-to-face interaction with a NAO
robot. The robot writes on the tactile tablet, the child then corrects
the robot by directly overwriting the words on the tablet with a
stylus. The facilitator remains next to the child to guide the work.
The secondary tablet allows the child to tell the robot what to write.
The areas of interest – corresponding to potential target of attention
– are circled in red with their name.

The subjects were typically located 50 cm away from
the robot with the primary (writing) tablet in front and the
secondary one 30 cm to the left of the first one. The facilitator
was located about 60 cm to the left of the subject. Finally,
two observers (visible by the child) were located further away
from the interaction field. Figure 4 indicates accordingly the
location of main areas of interest (the two tablets, the robot,
the facilitator and the observers).

The dependent variable is the measurement of the partici-
pants’ VFoA, assessed in terms of what the attentional targets
of the child are over time. The face of the child is acquired
through a fixed webcam (Logitech c920), placed on the table
(see Figure 4), and the attentional targets are then computed
as presented in section II.



Fig. 5. Picture of the interaction with one of the children.

B. Experimental Procedure

Six children (ages 5 to 6, 3 boys, 3 girls, none wearing
glasses) were enrolled for this study. The study took place at
school, in an isolated room (the computer lab). The partici-
pants were chosen by the teacher, and would come one after
the other to interact with the robot (duration: M = 19.6 min,
SD = 1.58).

The interaction is organized in rounds of writing: during a
typical round, the child requests the robot to write something
(a single letter, a number, or a full word), and presents a
tactile tablet (equipped with a custom writing application)
to the robot. The robot “writes” on the tablet by drawing
in the air the letters that are displayed on the screen by
the tablet application; the child then pulls back the tablet,
corrects the robot’s attempt by writing on top of or next to
the robot’s writing, and “sends” his/her demonstration to the
robot by pressing a small button on the tablet. The robot
learns from this demonstration and tries again. The child
continues the turn-taking until they decide to train the robot
on another word. In total, the children performed on average
12.16 (SD = 2.61) rounds of writing (complete details on the
rationale and implementation of this experiment can be found
in [23]).

Once per interaction, the robot interrupts the handwriting
task to tell a story (taking about 2 min), and the turn-based
hand-writing task continues afterwards. The intended purpose
of the story-telling episode is to break the routine of the writing
turns by creating a surprise, and thus, to elicit a different set
of attention behaviors from the child.

C. System Implementation

The experiment was carried out with an Aldebaran NAO
robot, using ROS as a middleware to build the attention es-
timation pipeline (Figure 6). Head pose estimation, presented
in section II, builds on the dlib and OpenCV libraries; the
pose transformations are handled by the ROS TF library. The
same TF library is used to represent the possible point of
interests as individual frames: an object is considered to be
in focus when its frame lies within the field of attention of

tfattention tracking

/image,
/camera_info,
dlib faces model,
3D face template

static pose publishers

locations of
areas of interestrobot state publisher

focus estimation

/frames_in_focus

objects poseschild face

robot pose

Fig. 6. ROS nodes involved in the VFoA estimation (orange nodes
were specifically developed for this work).

the participant (Figure 3). The implementation is open-source
and available at https://github.com/chili-epfl/
attention-tracker.

The implementation of the hand-writing activity itself has
been presented by Hood et al. in [23].

D. Data Collection & Analysis

Successful detections of the head, and, when detected, the
attentional targets of the children as estimated by the robot,
were logged during the experiment (in total, 6×19.6 = 117.6
min of interaction). The only post-processing consisted in
filtering out gaze shifts (short episodes – below 500ms –
between two attentional targets).

We video-recorded the interactions, and performed a post-
hoc manual coding of the focus of attention (24% double-
coded, Cohen’s κ = 0.91, high reliability). The manual coding
forms our attentional ground-truth.

To assess the accuracy of the attention estimation by the
robot, we computed over time the overlap between the ground-
truth and the robot’s estimate and the inter-rater agreement
(Cohen’s κ). The periods where the head was not detected
were excluded from the agreement computation: at such times,
the robot explicitly knows that it can not estimate the focus
of attention, and as such, we do not consider that it wrongly
estimates the focus.

E. Results

The main results are reported in Table I Figure 7 further
gives a concrete picture of the ground-truth vs. computed
attentional targets for subject 4 (the subject with the least
successful tracking).

During the whole interaction, the head pose of the chil-
dren was consistently tracked, 86% of the time in average,
SD = 3.0. While this high score is expected for a face-to-face
interaction with a static head-tracking camera (meaning that
the child head would remain in the field of view of the camera
most of the time), this is still comforting in terms of suitability
of our approach for head pose estimation with children in field
experiments of this kind. Expectedly, the primary causes of
lost head pose were occlusions with the hands (similar to the
middle-bottom picture in Figure 2), close proximity with the
tablet while writing, and gaze directed to the facilitator (who
was sitting directly on the left of the child, Figure 5).

https://github.com/chili-epfl/attention-tracker
https://github.com/chili-epfl/attention-tracker


TABLE I
ATTENTION TRACKING ACCURACY. Head pose tracking IS THE PERCENTAGE OF TOTAL TIME OF SUCCESSFUL DETECTION OF THE HEAD POSE;
Agreement IS THE PERCENTAGE OF MATCHING TIME BETWEEN MANUALLY ANNOTATED FOCUS OF ATTENTION (GROUND-TRUTH) AND ROBOT’S

COMPUTED FOCUS OF ATTENTION. TOTAL DURATION: 117.6 MIN.

Subject 1 2 3 4 5 6 M SD

Head pose tracking (%) 88.2 83.5 90.5 83.1 87.9 85.0 86.4 3.0

Agreement (%) 58.9 67.1 79.2 48.3 65 77.1 65.9 11.5
Cohen’s κ 0.48 0.56 0.68 0.26 0.47 0.68 0.52 0.16
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Fig. 7. Comparison of computed focus of attention vs. ground truth during a face-to-face child-robot interaction (subject 4 in table I,
3.5min-long excerpt). In blue (top lines), the focus of attention as computed by the robot; in orange (bottom lines), the focus of attention as
manually annotated (ground-truth). The bottom section shows agreement between both (whenever the head is detected).

In terms of attention tracking, Cohen’s κ values are between
0.47 and 0.68 with one subject resulting in significantly worst
tracking, at 0.26. While the interpretation of Cohen’s κ is
subject to discussion (the number of the coded values – in
our case 6 – and the distribution probability of values – in
our case, values are not equiprobable – are factors impacting
κ independently of the level of agreement), the levels of
agreement are moderate to substantial, with one subject only
showing fair agreement [24]. Further analysis of the videos
shows that the child with the lowest level of agreement was
particularly quiet and would indeed rely more on the eyes to
direct his gaze than the other children, thus leading to a less
accurate estimation of his focus of attention.

The next section builds upon this technique for real-time
estimation of the focus of attention: by comparing the focus
of attention with the set of attentional targets a priori expected
by the robot, we can estimate to what extent the user is “with”
the robot.

IV. WITH-ME-NESS

A. Concept & Calculation

The concept of with-me-ness has been introduced in the field
of Computer Supported Collaborative Learning (CSCL) by
Sharma et al. in [10]. Sharma et al. introduce this concept in an
attempt to answer a recurrent teacher’s question: “how much
are the students with me?”. They distinguish what they call
perceptual with-me-ness (the student follows what the teacher

refers to with deictic gestures) from conceptual with-me-ness
(the student follows what the teacher refers to verbally), and
they show in an eye-tracking study that conceptual with-me-
ness in particular correlates with better learning performance.
This also relates to the concept of gaze cross-recurrence that
has been shown to reflect the quality of the interaction [25] in
collaborative learning tasks.

Sharma et al. simply define conceptual with-me-ness as the
normalized percentage of time during which the student’s gaze
overlapped the areas of teaching slides currently referred to by
the teacher. In order to apply it to human-robot interactions,
we propose to extend this concept, and to define conceptual
with-me-ness as the normalized ratio of time that the human
interactant focuses its attention on the attentional target ex-
pected by the robot for the current task (or sub-task).

Algorithm 1 provides a formal way of computing the level
of with-me-ness W between two time points [tstart, tend]. A
notable difference with the original definition by Sharma et
al. is that, at a given time t, the task task(t) performed by
the robot may elicit more than one attentional target; thus, at a
given time, more than one location can be regarded as possible
expected focuses of attention for the human. For example, a
robot which is writing, could typically elicit gazes to its hand
as well as to its head. A human looking at either of these
locations would be considered to be with the robot in terms of



Algorithm 1 Computation of with-me-ness. dw stands for
the duration the human is actually with the robot, while de
stands for the total time where the human would be expected
to be with the robot, task(t) represents the task performed
by the robot at time t (possibly none), F (task) represents the
(possibly empty) set of expected attentional targets associated
to task task, f(t) represents the actual focus of attention of
the human measured at time t.W[start,end] represents the level
of with-me-ness from tstart to tend.

1: procedure COMPUTE WITH-ME-NESS
2: dw, de ← 0
3: t← tstart
4: repeat
5: if task(t) 6= nil and

F (task(t)) 6= ∅ and
f(t) 6= nil then

6: if f(t) ∈ F (task(t)) then
7: dw ← dw + δt
8: end if
9: de ← de + δt

10: end if
11: t← t+ δt
12: until t = tend
13: W[start,end] ← dw

de

14: return W[start,end]

15: end procedure

TABLE II
MAPPING BETWEEN THE INTERACTION PHASES AND THE EXPECTED

ATTENTIONAL TARGETS.

Phase Expected targets

Presentation robot
Waiting for word to write secondary tablet
Writing word tablet, robot
Waiting for feedback tablet, secondary tablet
Story telling robot
Bye robot

interaction1. Also notable, we exclude from the computation
of W all of the periods of time where the user’s focus of
attention can not be estimated (typically because the user’s
face is not visible at those times).

B. Experimental Measure & Interpretation

Over the course of the experiment presented in section III,
the robot controller would associate a set of expected atten-
tional targets to the phase of the interaction (Table II). For
instance, while the robot was waiting for the child’s hand-
writing demonstration (“Waiting for feedback”), the expected
attentional target of the child was the tablet (since the child
was supposed to write there) or the secondary tablet (that
displayed a template of the word, used as a reference by the
child). These expected targets (green lines on Figure 8) form

1Considering a probabilistic model of attention expectations (an attention
distribution) would be an interesting extension of this metric.

the robot’s attentional a priori knowledge and are used to
compute the with-me-ness. With-me-ness can be calculated
over the whole interaction or over shorter time windows.
With-me-ness over the whole interaction for the six subjects
is reported in Table III. The Pearson’s correlation with the
ground-truth is r(4) = 0.46 (significance not computed due to
small sample size). Shorter time windows are interesting for
two purposes: to analyse the level of with-me-ness in relation
to specific interaction episodes; to allow a measurement of
with-me-ness by the robot over the course of the interaction
(in-the-moment measurement) – in the latter case, one may
typically want to consider a sliding time window.

TABLE III
LEVELS OF WITH-ME-NESS. FOR EACH SUBJECT, THE WITH-ME-NESS

LEVEL IS REPORTED OVER THE WHOLE INTERACTION, EITHER BASED ON
THE ANNOTATED FOCUS OF ATTENTION (i.e. ground-truth with-me-ness),

OR BASED ON THE FOCUS OF ATTENTION MEASURED BY THE ROBOT.

Subject 1 2 3 4 5 6 M SD

Wg.truth 79.4 81.6 90.5 87.9 90.7 80.9 85.2 5.1
Wrobot 52.6 55.3 74.3 52.9 59.5 63.9 59.8 8.3

The with-me-ness plotted at the bottom of Figure 8 is
in fact computed on a sliding window of 30 seconds, and
thus gives a picture of “how well the child is following
the robot’s expectations” at that time. As seen, the with-
me-ness computed at run-time by the robot (blue line) is
generally lower than the ground-truth (orange line, based on
video-annotations), and sometimes quite off, such as during
episode marked “A”: during that phase, one can notice that
the attention is mostly directed to undefined target Other,
likely a consequence of inaccurate head detection. This kind
of error (inaccurate head pose estimation) is the main source
of discrepancy between the ground-truth and the attention
distribution measured by the robot: ignoring all the episodes
where the child’s gaze is measured to be directed to Other, we
indeed obtain levels of with-me-ness close to the ground-truth
(over the six subjects, M = 87.5, SD = 4.6).

A chart like Figure 8 remains a useful tool to analyse the
interaction, and several observations can be made from it: the
green lines represent how the robot imagine, at a given time,
the attention distribution of the child. They also provide an
accurate picture of the overall turn-taking as viewed by the
robot: for instance, the episode “B” on Figure 8 corresponds to
one of the “Robot writing” episodes, surrounded by “Waiting
for feedback” phases like “C”; episode “D” corresponds to the
story telling; etc. In terms of interaction, the large variance of
the duration of these phases reflects the fact that this child
would sometimes take a lot of time to send feedback to the
robot, and sometimes, on the contrary, be very quick.

Looking at the ground-truth focus of attention (orange
lines), the first striking observation is that this child did
generally closely follow what the robot was expecting: in
that regard, it seems that the child was very much engaged
in the interaction (we discuss in the next section the exact
relationships between with-me-ness and engagement). The
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Fig. 8. With-me-ness. Evolution of the level of with-me-ness over the whole ≈17min long interaction of subject 2. The top chart is similar
to Figure 7 with the expected attentional targets added in green. The bottom diagram represents the instantaneous level of with-me-ness over
a sliding window of 30 seconds. The blue line is the with-me-ness as estimated by the robot, the orange line is the with-me-ness computed
from manually annotated attentional targets. Pearson’s correlation between both series for this subject: r(973) = 0.58, p < .001.

only major exception is the story-telling phase (episode “D”):
the child was seemingly not captivated by the first half of the
story, and their attention was not directed towards the robot
(this actually matches the observed behavior of the children
who mostly found the story boring).

Another interesting observation pertains to the facilitator:
as one can see, this child only rarely turned to the facilitator,
possibly indicating that the interaction and the task were
meaningful and easy enough for him to follow alone.

More subtle patterns and events can also be observed: for
instance, during the feedback phases like episode “C”, we
can notice numerous gaze shifts between the tablet (where
the child writes) and the secondary tablet (that showed a
template of the word). The episode “B” (robot writing) is also
interesting: the child did not look at the robot, and instead
remained focused on the secondary tablet. This situation is
typically useful for the robot to detect as it may want to adapt
its behavior to recover the child’s attention.

V. DISCUSSION

a) Head Pose to Assess Attention: is it Relevant?:
We already stated the main limitations of our approach to
estimating the focus of attention: eye gaze information is
neglected and we do not perform visibility check of the in-
focus objects (we simply approximate them to their origins,
ignoring possible occlusions).

While the first issue is shared with most of the other vision
(2D or 3D) or motion capture techniques for real-time gaze
estimation found in robotics, our results are positive: we show
that relying purely on head pose estimation to estimate gaze
direction leads to real-world measures that are worth being
considered and used. They may not match manual annotations,
but they are definitely a valuable in-the-moment input for
the robot. For certain children, we reach levels of accuracy
traditionally considered as good.

Our approach relies on a simple, non-intrusive sensor (a
RGB camera by the robot) and an open-source, fast pose

estimation algorithm : we hope that this may contribute to
the widespread adoption of such a technique on a range of
robots, including the relatively common NAO platform.

b) With-me-ness: yet another metric of engagement?:
Borrowing the neologism from the field of CSCL, we have
also introduced in this article with-me-ness as a measure of
“how much the user is with the robot during a task”. This can
be acquired over the course of the interaction, thus providing
the robot with a real-time metric for a relatively high-level
social construct, undoubtedly related to engagement.

One may reasonably wonder how different with-me-ness is
from joint attention on one hand, and from engagement on
the other hand. With-me-ness is related to both, with however
noteworthy nuances: (Triadic) joint attention is understood as
the cognitive realization of a shared attention to an object,
itself building on a shared perception of that object (i.e. joint
attention builds on a perceptual alignment of two agents).
Conceptual with-me-ness as proposed by Sharma et al. in [10]
is on the contrary referential: “you are with me if you focus on
what I refer to, either explicitly or implicitly”. We understand
it here in a slightly broader sense that reflects the interaction:
“you are with me if you focus on what is important for the
interactive task at hand.”

On the other hand, with-me-ness is only a precursor of
engagement: it does not say much about the cognitive com-
mitment of a user to an interaction. A user may closely
adhere to the injunctions of the robot (or, actually, of the
experimenters), with thus high levels of with-me-ness, without
being engaged in the interaction. This is typically seen in
child-robot interaction: children will attempt to closely follow
what they are asked to do – which may look like they are
engaged in the interaction – while they merely obey orders.

Compared to engagement, one of the strengths of with-me-
ness is its specificity: it is well-defined, we can formalize it,
and as such, it is valuable to assess and compare how users
are willing or able to interact with a robot. We have hopefully



demonstrated in this article that with-me-ness is an operational
in-the-moment metric that can also be used as a real-time
feedback to the robot controller to build richer, more adaptive
interactive behaviors for our robots.

Note however that, besides the actual focus of attention, the
mapping phase/expected attentional target (i.e. our Table II) is
a critical piece of information to interpret with-me-ness. The
mapping is typically built by a domain expert, and is often
subject to debate (for instance in our experiment, one could
argue that during the “Waiting for feedback” phase, the child
could have gazed toward the robot to make sure the robot
was paying attention, and consequently, robot should be added
to the expected target). For this reason, the chosen mapping
should always be reported along with the computed with-me-
ness levels, and with-me-ness should not be reported as an
absolute metric, but rather as a mean of comparing different
interactions within the same study.

VI. CONCLUSION

We have presented how a robot can effectively assess in
real-time with a regular camera, the focus of attention of its
interactants, and how we can combine it with the robot’s a
priori knowledge about the interaction to build a metric of
with-me-ness over the course of the interaction.

The experimental validation has been conducted with six
children in face-to-face interaction with an autonomous robot,
over a total duration of about 2 hours. It shows that 1) most
of the time, we are able to estimate the head pose of these
children; 2) based on these head poses only, the instantaneous
focus of attention as computed by the robot does reach a good
level of accuracy, with however one inaccurate outlier out of
the six participants; 3) the robot is able to compute in real-
time a level of with-me-ness that correlates strongly with the
ground-truth.

The accuracy of the attention estimation could be im-
proved, first by adding heuristics to detect and ignore er-
roneous/inaccurate face detections, second by implementing
pupil tracking on top of head pose estimation. However, our
results show that the accuracy levels that we reach already
support the reliable computation of a metric measuring a
high-level social construct, the with-me-ness, which we ar-
gued should be used as a well-defined, reliable precursor of
engagement in building adaptive robot behaviors.
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