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Abstract

In order to collaborate with humans, robots are of-
ten provided with a Theory of Mind (ToM) archi-
tecture. Such architectures can be evaluated by hu-
mans perception of the robot’s adaptations. How-
ever, humans sensitivities to these adaptations are
not the one expected. In this paper, we introduce
an interaction involving a robot with a human who
design, element by element, the content of a short
story. A second-order ToM reasoning aims at esti-
mating user’s perception of robot’s intentions. We
describe and compare three behaviors that rule the
robot’s decisions about the content of the story:
the robot makes random decisions, the robot makes
predictable decisions, and the robot makes adver-
sarial decisions. The random condition involves no
ToM, while the two others are involving 2nd-order
ToM. We evaluate the ToM model with the ability
to predict human decisions and compare the ability
of the human to predict the robot given the differ-
ent implemented behaviors. We then estimate the
appreciation of the robot by the human, the visual
attention of the human and his perceived mutual un-
derstanding with the robot. We found that our im-
plementation of the adversarial behavior degraded
the estimated interaction’s quality. We link this ob-
servation with the lower perceived mutual under-
standing caused by the behavior. We also found that
in this activity of story co-creation, subjects showed
preferences for the random behavior.

1 Introduction
In contrast with virtual agents or any intelligent tool, a role
played by a physical humanoid robot is known to promotes
anthropomorphism [Kiesler et al., 2008]. This effect is often
presented as an adventage in Human-Robot Interaction (HRI)
community since it may reinforce subjects engagement in ac-
tivities. A well known example of such a fenomena is called
“protégé” effect, where subjects create an attachement as they
feel responsible of the robot. This is usually desired in ther-
apeutic and pedagogical contextes [Tanaka and Matsuzoe,
2012] [Jacq et al., 2016a]. Besides, another challenge of HRI

is to design non-autistic robots by implementing ToM archi-
tectures [Lemaignan and Dillenbourg, 2015]. It is accepted
that Human-Robot collaboration would be improved by an
awarness of both intentions by sharing mental models [Shah
and Breazeal, 2010]. Especially in educative perspectives,
where researchers in the field of Computer-Supported Collab-
orative Learning (CSCL) explain how a shared understand-
ing helps in collaborative resolutions of problems [Roschelle
and Teasley, 1995]. The question we want to raise through
this study concerns the impact of a ToM implementation on
the human sensitivity during a collaborative task with a hu-
manoid robot.

In this paper, we define mutual understanding by the abil-
ity of agents to predict others and to be predicted by others.
We implemented a reasoning model for mutual understanding
based on a three-agents architecture: self; other; self-view-
by-other, introduced in [Jacq et al., 2016b]. We used it to
implement two robot’s behaviors: making predictable deci-
sions or making adversarial decisions. These behaviors are
designed within an activity where the robot chooses, turn by
turn with a human, elements that construct a short story. Our
predictable behavior is built in order to facilitate the mutual
understanding, while our adversarial behavior lets the subject
believe he understands the robot and suddenly surprises him
with the least predictable decision. As a control condition,
we also implemented a random behavior, in which the robot
only makes random decisions.

We conducted a study involving 47 subjects, not aware of
the robot’s behavior condition. We found that, while the ad-
versarial and random conditions were associated with a sim-
ilar low level of measured mutual understanding (compared
with the predictable condition), only the adversarial condi-
tion led to significantly lower appreciations of the robot. Be-
sides, it seems that subjects perceived higher misunderstand-
ing situations in the adversarial condition, which led us to
hypothesize that a conscious low mutual understanding be-
tween humans and robots may degrade the appreciation of
the robot and consequently, may reverse the benefits of the
activity. Hence we invite, with this paper, to stress the de-
sign of the human-robot mutual understanding, especially in
collaborative contexts.



2 Related work
Introduced by Premack and Woodruff [Premack and
Woodruff, 1978] and developed by Baron-Cohen and
Leslie [Baron-Cohen et al., 1985], Theory of Mind (ToM) de-
scribes the ability to attribute mental states and knowledge
to others. In interaction, humans are permanently collecting
and analyzing huge quantities of information in order to stay
aware of emotions, goals and understandings of their fellows.
This process enables the maintenance of a common ground
of knowledge [Clark and Brennan, 1991], which is essential
for collaboration.

Robot architectures enabling first-order models have been
developed within the HRI community, which led to solve ba-
sic ToM tests [Breazeal et al., 2009][Warnier et al., 2012].
More recent architectures extended such reasoning to plan
execution for collaborative tasks [Devin and Alami, 2016].
Regarding mutual modeling, second order of ToM has been
stepped by Nikolaidis, solving shared plan execution through
visual perspective taking: in [Nikolaidis et al., 2016], the
robot is computing the most understandable trajectory in or-
der to share a grabbing intention, rather than the most effec-
tive trajectory in terms of time and energy. Our model of rea-
soning is based on the same idea of playing with the estimated
comprehension of the human, but is specialized to context-
based story creation while gestural intentions are based on vi-
sual and physical computations. Since our activity concerns
a sequential decision-making and does not need any visual
reasoning, we moved to a simpler ToM approach.

First introduced in CSCL [Dillenbourg, 1999] and then
borrowed by Human-Robot Interaction (HRI) commu-
nity [Lemaignan and Dillenbourg, 2015], mutual modeling is
a computational framework for ToM where agents are mod-
eling each other’s intentions, rather than knowledges and be-
liefs. As in other approaches, higher orders of mutual mod-
eling are defined to express how humans can recursively at-
tribute a model of ToM to others: in the first order agents only
construct models of others without supposing that they may
also perform mutual modeling, while in the second order they
also infer how others model others, including themselves.

We wanted to place our study in the perspective of a ped-
agogical context, hence we adopted a mutual modeling ap-
proach. We focused on Mutual understanding, which in-
volves a second order of modeling: more than simply un-
derstanding the other, an agent must take care of being under-
stood. And trying to be understood requires an agent with the
capacity to model itself through the eyes of the other.

3 Story co-creation by selecting elements
The activity consist in choosing, turn by turn with the robot,
a specific element of the story. Such an element can be the
place of the story (planet? kingdom? island?) or the job of
the protagonist (space pioneer? knight? pirate?). Once all
elements have been selected by the subject and the robot,
the resulting story is generated, based on the human-robot
collaborative selection of contents. Actually, the story is
rather “filled” than generated: at the beginning, a sentence
has a fixed structure but each word that is – or depends on – a
selectable element is replaced by a symbolic variable. For ex-

ample, our story could start with the two following sentences:

Once upon a time, in a Place far away populated
by People, was living a wild Main Char Job named
Main Char Name.
Personal Pronoun(Main Char Gender) was very brave.

In this text, variables are the bold terms. The variable
“Place” is a selectable element, that can be replaced by any
possible geographical place (planet, kingdom, island, ...).
The personal pronoun related to the main character depends
on the selectable element “Main Char Gender”. Some whole
sentences can also depend on a variable in order to avoid
inconsistencies.

In order to choose an element, a subject must touch it on
a touchable screen. For its part, the robot just vaguely points
it with its finger and the element is in parallel selected on
the screen. The robot is also provided with a face detector
and alternates head movements, gazing at the screen or at the
subject. Finally, when the robot performs hand gestures while
speaking.

Before each robot’s turn, subjects are asked to predict what
will be the robot’s decision. The sequence of successive
triples (subject’s decision; subject’s prediction of the robot;
robot’s decision) was feeding our two decision making algo-
rithms based on 2nd order ToM.

4 Decision making

4.1 Contexts

We define a context as a set of selectable elements belonging
to a same semantic field. For example, the context science
fiction contains the elements planet, alien, lazer gun, etc. We
arbitrary set 8 contexts: science fiction, pirates, middle-ages,
forest, science, army, robots, magic. Since an element can be
associated to several contexts, contexts are not disjoint.

4.2 Agent models

As suggested in [Jacq et al., 2016b], we define three agents:
the robot (R), the human (H), the robot predicted by the hu-
man (P). Each agentA is modeled by a log-probability distri-
bution over contexts, LA, estimating the odds that it is going
to pick elements from this context. For example, LH(pirates)
estimates the probability of the event “the human is going to
pick an element in the pirates context”, while LP(pirates) es-
timates the probability of the event “the human predicts that
the robot is going to pick an element in the pirates context”.
From these distributions, we can define, for each agent A,
its most likely context Cmax

A = argmaxC LA(C) and its least
likely context Cmin

A = argminC LA(C).

4.3 Agent weights

Each agent A is given a weight WA representing the human
inclination to establish its predictions, rather based on the
robot’s decisions (WR), on his own decisions (WH) or on
his own predictions of the robot (WP ).



4.4 Weights updates
At each step of the element-selection activity, we receive a
new triple (eH; eP ; eR) where eH is the element picked by
the human, eP is the human prediction of the element picked
by the robot, and eR is the element actually picked by the
robot. An agent’s weight WA is incremented if its last picked
element eA belongs to its most likely context Cmax

A :

WA ←WA + 1{eA ∈ Cmax
A } ∀ agent A

4.5 Probabilities updates
Then, agents log-probability distributions LH and LR are
both updated in a similar way, for all context C:

LH(C)← LH(C) + 1{eH ∈ C}
LR(C)← LR(C) + 1{eR ∈ C}

While LP is updated using weights WR, WH and WP , for all
context C:

LP(C)← LP(C) +
∑

A∈{R,H,P}

WA ∗ 1{eA ∈ C}

4.6 Predictable behavior
Our predictable behavior aims at making decisions that are
easily predicted by the subject. In that purpose, the robot
always pick elements from P’s most likely context Cmax

P :

eR ∈ Cmax
P

4.7 adversarial behavior
The adversarial behavior is more complex. We use the pre-
dictable behavior, waiting for the human to make good pre-
dictions (predicting an element eP belonging to Cmax

P ). Then,
we suddenly move to the opposite: picking eR in the least
likely context Cmin

P . However, we wanted to make this behav-
ior the least understandable. Therefore we add, with a low
probability, the possibility to pick eR from Cmax

P while the
humanis making a good prediction, or the possibility to pick
exactly the element predicted by the subject while the human
did not predict an element from Cmax

P . Algorithm 1 summa-
rizes this behavior.

Algorithm 1: adversarial behavior
if eP ∈ Cmax

P then
with prob. P=0.8, eR ∈ Cmin

P
with prob. P=0.2, eR ∈ Cmax

P
else

with prob. P=0.8, eR ∈ Cmax
P

with prob. P=0.2, eR = eP
end

5 Experiment
We conducted an experiment in order to study the impact of
the three behaviors of the robot on the interaction. The con-
tent of the activity was designed in English language. In order
to make sure they had a good understanding of English, we
invited undergrad students to be subjects for our experiment.
However, this decision may have brought weaknesses regard-
ing our possible results. First, this population is biased by the
fact that a part of them have already been implied in a human-
robot experiment. Then, this story co-creation activity aims to
provide a support for children education, and results in adults
population may never be generalized to children.

5.1 Groups
A total of 47 students (18f, 29m) accepted to participate to
the study. The experiment was conducted in our laboratory.
Subjects were aged between 18 and 34 (M 22.8, SD 3.9). We
defined 3 groups in which subjects were randomly allocated:
the random-behavior group (9f, 7m), the predictable-behavior
group (5f, 11m) and the surprise-behavior group (4f, 11m).
We used the random behavior as a control condition.

5.2 Design
Each subject was alone with the robot in the room during the
whole interaction and the robot was fully autonomous. The
spatial arrangement is detailed in figure 2 (top view) and 3
(camera view). The robot, standing on a support, is facing the
human user and between them, a touchable screen is inclined
for the subject. Also on the support, at the feet of the robot,
a RGB-camera was tracking the user’s face. We used face-
tracking for attention estimation (see 5.3), but also in order to
implement robot’s head movements. The questionnaire was
displayed on the touchable screen and required to scroll down
with a mouse. For that purpose, subjects had a mouse avail-
able on the right of the screen. The experiment was designed
in 4 phases:

1) Introduction (0.75 min exactly): At the beginning, the
screen is empty. The robot introduces itself and the activity.
All the speeches of the robot were scripted and can be found
in our source code, available on GITHUB.

2)Turn by turn selection of elements (4.7 min on aver-
age): To start, the robot asks subjects to choose the first ele-
ment: the place of the story (planet, forest, kingdom...). The
interface appears on the screen, displaying a suggestion of
possible elements the subject can choose. Figure 1 shows
an example of screen capture of the interface for subject’s
turn. Then, elements that will be suggested to the robot are
shown on the screen and subjects are asked to guess what the
robot is going to choose. When a subject has made his predic-
tion, the robot takes its turn and chooses, by pointing a button
with its arm, the next element. During this turn, buttons to
pick elements do not react to subjects’ touch. Finally it is the
subject’s turn again, etc. In order to better feed user model-
ing algorithms, at two points the human had two consecutive
turns, hence the human made more decisions than the robot
(10 turns for the human and 8 turns for the robot).

3) Story-telling (3.6 min exactly): At the end, when all
elements have been selected by the human and the robot, the



What is the favourite dance of the main character?

Waltz Polka Salsa

Tango

Rock

(you) The story take place in a forest

(you) you predicted robot monkey

(Nao) People of the forest are 

ghost robots

(you) main character is a woman

(you) her name is Dolores

(you) you predicted lumberjack

(Nao) main character job is 

princess

(you) her favourite drink is wine

(you) you predicted sword

(Nao) her weapon is light saber

Display what the user has to choose

Display historic of 

previous actions

Pictures and names illustrating 

the list of suggested elements

Emoji buttons for online user feedback

Figure 1: Screen capture of user interface. It contains 4 areas. Top-
left: a question reminds what kind of element the user has to choose
(for instance, the favorite dance of the main character). Center: the
set of suggested elements the user can choose illustrated by pictures.
Bottom: 4 emoji buttons the user can use, if he wants to, in order to
share his feeling. Right: a column displays the historic of previous
action in order to help the user to make prediction about robot’s
actions.
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Figure 2: Spacial arrangement, top view: (a) subject, (b) touchable
screen, (c) support for the robot, (d) rgb-camera for face-tracking,
(e) robot, (f) mouse helping the subject to fill the questionnaire, (g)
camera filming the interaction.

resulting story is generated, and the robot tells the story to the
human. While the robot tells the story, the screen displays the
told sentences. At any time during the whole interaction (in-
cluding both co-creation and storytelling phases) four emoji
buttons were displayed on the screen and could be used by
subjects whenever they wanted to share feedback about their
feelings. As in [Jacq et al., 2016a] and [Johal et al., 2016] we
used thumbs up and down, plus two emoji buttons for “laugh”
or “absurd” feeling.

4) Questionnaire (10.3 min on average) Finally, a ques-
tionnaire appeared on the screen, asking subject about their
appreciation of the activity, their perception of the robot
(Godspeed) and their perception of it’s ToM abilities.

5.3 Measures
In order to measure our models accuracy, we counted the
number of time the human was picking or predicting elements
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Figure 3: Spatial arrangement, camera view: (a) subject, (b) touch-
able screen, (c) support for the robot, (d) rgb-camera for face-
tracking, (e) robot, (f) mouse helping the subject to fill the ques-
tionnaire.

in the expected most likely contexts: the number of time that
eH ∈ Cmax

H and the number of time that eP ∈ Cmax
P . We mea-

sured the actual mutual understanding as the number of time
the human successfully predicted the robot. Emoji buttons
were used to estimate on-line subjects appreciation of robot’s
decisions. In order to track the gaze direction of subjects, we
used a system similar to Attention-tracker [Lemaignan et al.,
2016], improved with OpenFace Library [Amos et al., 2016].
This system is available on GITHUB. As in [Lemaignan et al.,
2016], we measured an on-line estimation of with-me-ness. In
our setup, with-me-ness was defined by the frequency a sub-
ject looks at the screen or at the head of the robot, over an
exponential moving average:

W t = 0.9 ∗W t−1 + 0.1 ∗ 1t
targets

In the above equation, W t represents our estimated with-me-
ness at time t. 1t

targets equals 1 if the subject is looking at the
screen or the head of the robot at time t, otherwise it equals
0. This is a simplification of the original definition of with-
me-ness where targets (robot’s head and screen) are the same
in all phases of the interaction.

The questionnaire was designed in three parts. The first
part contained five questions regarding the appreciation of the
subject: three about the resulting story (bad – good, not funny
– funny, coherent – absurd) and two about feeling during the
co-creation (negative – positive, bored – excited). The second
part was a randomly shuffled Godspeed questionnaire [Bart-
neck et al., 2009]. The last part contained four questions con-
cerning the perception of mutual understanding:
- Do you think the robot took into account your choices?
- Do you think the robot took into account your predictions?
- Do you think the robot was predicting your choices?
- Were you able to predict the robot choices?
In all parts, subjects had to pick a number over a type-Likert
scale between 1 and 6, in order to avoid middle points and to
force them to settle between the two opposite answers.



Measure Condition Observation Comparison Mann-Whitney rank test

M
.U

.
# successful predictions

pred. M=2.38, SD=2.54 pred.>adv. stat=62.5, p<.05 (*)
adv. M=1.31, SD=.71 pred.>rand. stat=44, p<.05 (*)
rand. M=1.07, SD=.99 adv.6=rand. N.S.

Pe
rc
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ve

d
M

.U
.

Subject predicts robot
pred. M=4.0, SD=1.5 pred.>adv. stat=53, p<.01 (**)
adv. M=2.43, SD=1.49 pred.6=rand. N.S.
rand. M=3.73, SD=.86 rand.>adv. stat=56, p<.01 (**)

Robot predicts subject
pred. M=3.5, SD=1.12 pred.>adv. stat=59, p<.01 (**)
adv. M=2.37, SD=.85 pred.>rand. N.S.
rand. M=2.93, SD=1.52 rand.>adv. N.S.

Robot uses subject choices
pred. M=4.93, SD=.88 pred.>adv. stat=68, p<.05 (*)
adv. M=4.0, SD=1.6 pred.>rand. N.S.
rand. M=4.6, SD=1.84 rand.>adv. N.S.

Robot uses subject predictions
pred. M=3.62, SD=1.73 pred.>adv. stat=62, p<.01 (**)
adv. M=2.37, SD=1.23 pred.>rand. stat=69, p<.05 (*)
rand. M=2.6, SD=1.44 rand.>adv. N.S.

G
od

sp
ee

d

Anthropomorphism
pred. M=3.93, SD=1.18 pred.6=adv. stat=2581, p<.05 (*)
adv. M=3.53, SD=1.42 pred.6=rand. N.S.
rand. M=4.09, SD=1.29 rand.>adv. stat=2212, p<.01 (**)

Intelligence
pred. M=4.52, SD=.73 pred.6=adv. N.S.
adv. M=4.35, SD=.98 pred.6=rand. N.S.
rand. M=4.71, SD=.99 rand.>adv. stat=2217, p<.001 (***)

Animacy
pred. M=4.13, SD=1.19 pred.>adv. stat=3550, p<.001 (***)
adv. M=3.70 ,SD=1.47 pred.6=rand. N.S.
rand. M=4.20, SD=1.54 rand.>adv. stat=3323, p<.01 (**)

Likability
pred. M=5.08,SD=.72 pred.>adv. stat=2228, p<.001 (***)
adv. M=4.64,SD=.70 rand.>pred. stat=2462, p<.05 (*)
rand. M=5.38,SD=.42 rand.>adv. stat=1556, p<.001 (***)

Table 1: Statistical results. First column: observed means and standard deviations of different discrete measures. Second column: compar-
ison of observed distributions using Mann-Whitney rank test with continuity correction. M.U.: measured mutual understanding (number of
successful predictions). Perceived M.U.: answers to ToM part of the questionnaire. Godspeed: answers to Godspeed part of the question-
naire.

6 Results
6.1 Model accuracy
We compared the observed accuracies (frequency that eH ∈
Cmax
H and that eP ∈ Cmax

P ) with uniform distribution over the
suggested set of element at each activity’s step (figure 4). We
observed frequencies significantly higher than random odds
for rich context-depending steps (protagonist’s name, favorite
drink, job and weapon, 2nd character’s type). Focusing on
figure 4B, we could only predict subject’s predictions better
than randomly at the beginning of the interaction after which,
in both random and adversarial conditions, it became too dif-
ficult for subjects to infer robot’s intentions.

6.2 Actual vs perceived mutual understanding
As expected, choices of the robot in the predictable condition
were more susceptible to be predicted by subjects. The num-
ber of successful predictions was higher in predictable condi-
tion than in adversarial and random conditions. We obtained
similar results with the average intensity of answers (1=Not
at all, 6=totally) to the question “Were you able to predict the
robot choices?”, meaning subjects were aware of the diffi-
culty to predict the robot in the adversarial and random condi-
tions. However, to the questions “Do you think the robot took

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

pl
ac

e

pr
ot

. g
en

de
r

pr
ot

. n
am

e
pr

ot
. d

ri
n
k

pr
ot

. d
an

ce

2n
d 

ch
. d

an
ce

an
t.
 g

en
de

r

an
t.
 n

am
e

an
t.
 a

rm
y

an
t.
 d

ri
nk

pe
op

le
pr

ot
. j

ob

pr
ot

. w
ea

po
n

2n
d 

ch
.
na

m
e

2n
d 

ch
. t

yp
e

an
t.
 jo

b

an
t.
 n

ui
sa

n
ce

an
t.
 h

ou
se

A: predicting decisions B: predicting predictions

F
re

q
u
e
n
c
y

Random

Observed (N=47)

Figure 4: Model accuracy vs random probability. A: (blue) fre-
quency that eH ∈ Cmax

H . B: (blue) frequency that eP ∈ Cmax
P . (red)

probability of picking the most likely context from a random deci-
sion.

into account your choices” and “Do you think the robot was
predicting your choices”, subjects gave higher scores in the
predictable condition than in the adversarial condition, but no
differences between predictable and control conditions were
found. The robot took into account subjects predictions only
in predictable and adversarial conditions. But when we asked
subjects to answer the question “Do you think the robot took



into account your predictions”, we found that answers inten-
sity was significantly lower in the adversarial condition than
in both predictable and random conditions. Observations and
statistics are reported in the two first part of Table 1.

6.3 Appreciation
The First part of our questionnaire concerned the apprecia-
tion of the activity and the created story rather than the robot.
However, answers of subjects were similar in the three con-
ditions (was the story good?: M=5+/-0.12, funny?: M=5+/-
0.2, absurd?: M=4+/-0.1, did you felt positive?: M=5+-0.1,
excited?: 4.7+/-0.1). We used emoji buttons in order to cap-
ture on-line judgment of the robot by subjects. Unfortunately,
the usage of these buttons (9.7 presses/subject) was too rare
to obtain small enough standard deviations required for sig-
nificant results. Despite this fact, we observed more presses
in the adversarial condition (M=11.2, SD=7.9) than in pre-
dictable (M=8.15, SD=6.8) and random (M=9.38, SD=8.1)
conditions. This higher usage of button in the adversarial
condition is observed in all buttons separately, except for
the “absurd” emoji button that was more used in the random
condition. The Godspeed part of the questionnaire contains
questions asking for a judgment of the robot. The differ-
ence with emoji buttons was the fact these judgments were
not direct responses to particular choices of the robot, but
rather global feelings about its aspect and behavior remain-
ing after the interaction. These questions can be sorted into
4 groups: anthropomorphism, animacy, intelligence, and lik-
ability. We concatenated answers to questions belonging to
the same group. We observed lower appreciations in the ad-
versarial condition compared to predictable and random con-
ditions in all other groups of questions. For anthropomor-
phism, answers from the adversarial condition were signif-
icantly lower than from predictable and random. A similar
observation concerning animacy, with answers from the ad-
versarial condition being lower than from predictable and ran-
dom. For perceived intelligence, answers from the adversarial
condition were lower than from random condition. The high-
est gap concerned answers to likability questions: answers
from the adversarial condition were significantly lower than
from predictable and random conditions. Interestingly, we
also found a significant preference for the random condition
compared to predictable condition. Godspeed measures and
statistics are reported in the third part of Table 1.

6.4 Attention
Results obtained concerning attention will be discussed in
detail in a longer version of this paper. Nevertheless, we
can report that we obtained a set of time series representing
evolution of with-me-ness for each condition. While mea-
sures in predictable and random conditions where correlated
(Pearson‘s correlation between average curves: r(540) =
0.75, p < .001), the set of curves obtained in the adversar-
ial condition deviated in average to stay at a lower level of
measured with-me-ness.

7 Discussion
Regarding mutual modeling results, it seems that subjects
were aware of their ability to predict the robot, but other ques-

tions of the last part of the questionnaire show how they per-
ceived the adversarial condition as a lack of understanding in
the robot. As expected, the adversarial condition generated
a perception of the ToM reasoning of the robot significantly
lower than in the predictable condition, but even lower than
control condition concerning the impact of subjects predic-
tions. Beside, it seems that the decision mechanism of the
robot in the random condition was overestimated, being not
differentiable from the predictable condition. We can asso-
ciate these different perceptions of robot’s decision making
with tracked attention results, in which trajectories from pre-
dictable and random condition were similar while trajectories
from adversarial condition were significantly lower during
three phases of approximately 50s. We can also explain God-
speed results in which concerns robot’s anthropomorphism,
intelligence and animacy, for which, while no difference was
observed between predictable and control conditions, robot’s
qualities were perceived significantly lower in the adversar-
ial condition than in control and, except for intelligence, sig-
nificantly lower than in predictable condition. However, an
unexpected observation concerned answers to the Godspeed
likability questions, according to which the robot was even
more appreciated in the random condition than in the pre-
dictable condition. A possible interpretation could be that the
random condition was least boring than the predictable condi-
tion. We could even suggest that in predictable and adversar-
ial condition, subjects started to create a coherent story while
in the random condition, they were directly tempted by the
robot in making incoherent decisions, and perceived that this
incoherence came from a mutual agreement with the robot.
Another reason why the appreciation was lower in the adver-
sarial condition can be the fact the robot starts by being co-
herent and so does the subject, and when suddenly the robots
makes an unexpected decision the subject is disappointed or
frustrated. All the code used in this experiment is open-source
and available at <Site For Code To Be Available>. We hope
our description of the experiment is detailed enough to en-
sure reproducibility of our results. However, we have to warn
the fact we obtained these results in a biased population of
engineering students and may not be observed in a different
population, especially in children.

8 Conclusion
This experiment was a preliminary study for further explo-
rations with the story co-writing interaction. We wanted to
test our different conditions of ToM-behavior first with adults
who would be more indulgent and least impacted by a robot’s
behavior. Thanks to these results, we know that different
conditions of robot’s ToM based behavior can strongly affect
robot’s appreciation and subjects attention. This also open
the possibility to control the quality of interactions by seeking
optimal 2nd-order ToM reasonings and behaviors. In future
works, we will study pure human-agent interaction (without
robot) through a large-scale experiment. For this we will de-
ploy our activity’s interface on a website. The goal will be
to improve our ToM model by analyzing patterns in humans
decision making. Then, we will use the improved model for
real-world Child-Robot Interaction in pedagogical contexts.
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Elizabeth Croft, and Susana Zoghbi. Measurement instru-
ments for the anthropomorphism, animacy, likeability, per-
ceived intelligence, and perceived safety of robots. Inter-
national journal of social robotics, 1(1):71–81, 2009.

[Breazeal et al., 2009] Cynthia Breazeal, Jesse Gray, and
Matt Berlin. An embodied cognition approach to min-
dreading skills for socially intelligent robots. The Interna-
tional Journal of Robotics Research, 28(5):656–680, 2009.

[Clark and Brennan, 1991] Herbert H Clark and Susan E
Brennan. Grounding in communication. Perspectives on
socially shared cognition, 13(1991):127–149, 1991.

[Devin and Alami, 2016] Sandra Devin and Rachid Alami.
An implemented theory of mind to improve human-robot
shared plans execution. In Human-Robot Interaction
(HRI), 2016 11th ACM/IEEE International Conference on,
pages 319–326. IEEE, 2016.

[Dillenbourg, 1999] Pierre Dillenbourg. What do you mean
by collaborative learning? Collaborative-learning: Cog-
nitive and Computational Approaches., pages 1–19, 1999.

[Jacq et al., 2016a] A. Jacq, S. Lemaignan, F. Garcia, P. Dil-
lenbourg, and A. Paiva. Building successful long child-
robot interactions in a learning context. In Proceedings
of the 2016 ACM/IEEE Human-Robot Interaction Confer-
ence, 2016.

[Jacq et al., 2016b] Alexis Jacq, Wafa Johal, Pierre Dillen-
bourg, and Ana Paiva. Cognitive architecture for mutual
modelling. arXiv preprint arXiv:1602.06703, 2016.

[Johal et al., 2016] Wafa Johal, Alexis Jacq, Ana Paiva, and
Pierre Dillenbourg. Child-robot spatial arrangement in a
learning by teaching activity. In Robot and Human Inter-
active Communication (RO-MAN), 2016 25th IEEE Inter-
national Symposium on, pages 533–538. IEEE, 2016.

[Kiesler et al., 2008] Sara Kiesler, Aaron Powers, Susan R
Fussell, and Cristen Torrey. Anthropomorphic interac-
tions with a robot and robot–like agent. Social Cognition,
26(2):169–181, 2008.

[Lemaignan and Dillenbourg, 2015] S. Lemaignan and
P. Dillenbourg. Mutual modelling in robotics: Inspirations
for the next steps. In Proceedings of the 2015 ACM/IEEE
Human-Robot Interaction Conference, 2015.

[Lemaignan et al., 2016] S. Lemaignan, F. Garcia, A. Jacq,
and P. Dillenbourg. From real-time attention assessment
to “with-me-ness” in human-robot interaction. In Pro-
ceedings of the 2016 ACM/IEEE Human-Robot Interac-
tion Conference, 2016.

[Nikolaidis et al., 2016] Stefanos Nikolaidis, Anca Dragan,
and Siddhartha Srinivasa. based legibility optimization.
In Human-Robot Interaction (HRI), 2016 11th ACM/IEEE
International Conference on, pages 271–278. IEEE, 2016.

[Premack and Woodruff, 1978] D. Premack and
G. Woodruff. Does the chimpanzee have a theory of
mind. Behavioral and Brain sciences, 1(4):515–526,
1978.

[Roschelle and Teasley, 1995] Jeremy Roschelle and
Stephanie D Teasley. The construction of shared knowl-
edge in collaborative problem solving. In Computer
supported collaborative learning, pages 69–97. Springer,
1995.

[Shah and Breazeal, 2010] Julie Shah and Cynthia Breazeal.
An empirical analysis of team coordination behaviors and
action planning with application to human–robot teaming.
Human factors, 52(2):234–245, 2010.

[Tanaka and Matsuzoe, 2012] Fumihide Tanaka and Shizuko
Matsuzoe. Children teach a care-receiving robot to pro-
mote their learning: Field experiments in a classroom for
vocabulary learning. Journal of Human-Robot Interaction,
1(1), 2012.

[Warnier et al., 2012] M. Warnier, J. Guitton, S. Lemaignan,
and R. Alami. When the robot puts itself in your shoes.
managing and exploiting human and robot beliefs. In Pro-
ceedings of the 21st IEEE International Symposium on
Robot and Human Interactive Communication, pages 948–
954, 2012.


